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Summary

We introduce a Sparse Multichannel Blind Deconvolution (SMBD) method. The method is a modifica-
tion of Euclid’s blind deconvolution where the multichannel impulse response is estimated by solving
a homogeneous system of equations. SMBD can tolerate moderate levels of noise and does not
require knowing the source duration. SMBD solves the homogeneous system of equations arising in
Euclid deconvolution by imposing sparsity on the multichannel impulse response. To avoid the trivial
solution, the sparse reflectivity is constrained to have unit norm. The latter results in non- convex
optimization that is solved via a constrained steepest descent technique.

Introduction

Deconvolution is an important and recurrent topic in seismic data processing. Many signals and
images can be represented via the convolution of an unknown signal of interest and a source sig-
nature. In general, the unknown signal or image can be estimated via inverse methods when the
source signature is known. This process is called deconvolution. When the wavelet is unknown the
process requires the simultaneous estimation of two signals. This process is often called blind decon-
volution Shalvi and Weinstein (1990). Two early attempts on blind deconvolution are Homomorphic
Deconvolution based on the work by Oppenheim and Schafer (1968) and implemented for the first
time in exploration seismology by Ulrych (1971). Another technique for blind deconvolution was pro-
posed by Wiggins (1985) who coined the name Minimum Entropy Deconvolution (MED) algorithm.
MED assumes that the reflectivity is sparse and operates by finding an inverse filter that maximizes
a measure of sparsity Donoho (1981). Both Homomorphic Deconvolution and MED suffer from a
variety of shortcomings. For instance, homomorphic deconvolution is inclined to instability due to
phase unwrapping and by its inherent inability to incorporate an additive noise term in the data. MED
deconvolution often tends to annihilate small reflection coefficients Ooe and Ulrych (1979); Walden
(1985).

Euclid deconvolution is a member of the plethora of methods that have been proposed for blind de-
convolution of seismic data. The method was first discussed in the geophysical literature by Rietsch
(1997a) and tested with real data examples in Rietsch (1997b). The method has also been inves-
tigated by Xu et al. (1995) and Liu and Malvar (2001) in communication theory and deconvolution
of reverberations. The idea can be summarized as finding common factors of the z-transform of the
source embedded in a group of seismograms with different reflectivity sequences. The problem leads
to the estimation of the multichannel seismic reflectivity via the solution of homogeneous system of
equations Mazzucchell and Spagnolini (2001). In the ideal case, the eigenvector associated to the
minimum non-zero eigenvalue of the homogenous system of equations is an estimator of the multi-
channel reflectivity. However, small amounts of noise impinge on the identification of the eigenvector
associated to the impulse response. We propose an improvement to Euclid deconvolution where the
homogeneous equation is satisfied by a sparse solution (sparse impulse responses). In other words,
we are assuming that the multichannel impulse response of the earth is a multichannel sparse series.



Theory

The earth can be modeled as a linear time invariant (LTI) system. The input-output relationship for
this system, assuming a stationary source wavelet and a noise free condition, can be written as

diln] =Y win—Kkrjlk], j=1...J (1)
k

where the multichannel seismic data can be represented by the d; = (d,[0],d;[2],...,d;[N —1]), simi-
larly the impulse responses for channel j can be written as r; = (r;[0],7;2],...,r;[M —1])7, and finally
we represent the seismic source function (the wavelet) via the vector w = (w[0],w[2],...,w[L —1])T.
We stress that N =M + L — 1. We also remind the readers that convolution can be expressed using
the z-transform as follows

Dj(z) =W(z)Rj(z), j=1...J. 2)

By virtue of equation 2, it is easy to show that
D,(2)R4(z) —Dy(2)Ry(2) =0, VY p,q (3)
which can be rewritten in matrix-vector form as follows
D,r,—D,r,=0 (4)

where D, and D, in equation 4 are the convolution matrices of channels p and ¢, respectively. Com-
bining all possible equations of type 4 leads to the following homogeneous system of equations

Ax=0 (5)
where
D, —D
D; —D
Dy —D
A= Dy —D; (6)
Dy —D,
Dy —Dj—»
D; —Dj 4
and
XZ[rl,l‘z,l‘3,...,l’]]T. (7)

Euclid method estimates the reflectivity by estimating the eigenvector associated to the minimum
non-zero eigenvalue of A” A Rietsch (1997a). A small amount of noise in the data makes the solution
impractical for real data applications Rietsch (1997b). The addition of a noise term in our signal model
leads to

Ax=e. (8)

It can be shown that e is white and we propose to find a solution x that minimizes e. In addition we
will constraint x to be sparse. To avoid the trivial solution, we must equip our problem with an extra
constraint x”x = 1. We propose to find the solution by minimizing the cost J(x)

% = argminJ(x), subjecttox’x=1 (9)

X

where 1
J(x) = EHAXH%M%(X)- (10)



The symbol 7, (.) is used to indicate the Huber norm with Huber parameter p. The Huber norm
forces solutions that are sparse. Using the Huber norm enables us to use a simple optimization
method based on steepest descent techniques. It is worth mentioning that to preserve the constraint
and keep the solution on the unit sphere, one should use an educated step that can be derived from
Rodrigues’ rotation formula Murray et al. (1994).

Examples

To examine the performance of proposed method we applied SMBD to a near offset section from the
Gulf of Mexico seismic data (Figure 1a). Figures 1a and b show the data before and after decon-
volution via SMBD, respectively. We also estimated the wavelet using the frequency-domain least
squares estimator. The wavelet is portrayed in Figure 2b. For completeness, the average sea floor
first break source wavelet is extracted and compared with the estimated wavelet. There is a strong re-
semblance of the estimated wavelet with the average first break pulse that was extracted by flattening
and averaging the water bottom reflection.

Conclusion

We have presented a modification to Euclid’s blind deconvolution method. The proposed method
alleviates some of the problems encountered in blind deconvolution via Euclid method. For instance,
SMBD can tolerate moderate levels of noise and does not require to know the precise length of the
source duration. The method permits to estimate broad-band (sparse) impulse responses that can
be used for wavelet estimation.
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Figure 1 Deconvolution of the Gulf of Mexico near offset section with the estimated wavelet. a) Before
deconvolution. b) After deconvolution.
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Figure 2 :Comparison of extracted wavelet for Gulf of Mexico seismic data using SMBD method with
first break pulse.
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