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Summary 
The Singular Spectrum Analysis (SSA) method, also known as Cadzow filtering, adopts the truncated 
singular value decomposition (TSVD) or fast approximations to TSVD for rank-reduction. SSA is 
efficient for attenuating Gaussian noise but it cannot eliminate erratic noise (non-Gaussian). We 
propose a robust SSA method for simultaneously removing Gaussian and non-Gaussian noise. A 
robust low rank approximation is used in the newly proposed method. Iteratively reweighted least 
squares (IRLS) is adopted to estimate the approximated robust rank reduction that is required by the 
SSA method. Synthetic and real data examples are used to illustrate the performance of the proposed 
method. 

Introduction 
Recently, several reduced-rank filtering techniques have been developed for random seismic noise 
suppression, e.g., f-xy eigenimage analysis (Trickett, 2003) and singular spectrum analysis method 
(Cadzow filtering) (Sacchi, 2009; Trickett, 2008). Rank-reduction methods have also been developed 
for simultaneous data completion and random noise attenuation (Oropeza and Sacchi, 2011; Trickett, 
2010; Kreimer and Sacchi, 2012; Gao et al., 2013). These rank-reduction methods have two main 
advantages: first, they are easy and natural to be applied on multidimensional data; second, they 
preserve the signal. In the SSA method, the seismic data consisting of a superposition of plane waves 
is transformed to the frequency-space domain. SSA embeds each frequency slice into a Hankel matrix. 
The rank of this matrix should be equal to the number of distinct dips in the data. Additive incoherent 
noise in the data will increase the rank of the Hankel matrix. Thus, the denoising problem is posed as a 
matrix rank-reduction problem. Then, the anti-diagonal elements of the rank-reduced matrix are 
averaged to recover the signal in frequency domain. In general the TSVD or fast approximations to 
TSVD are applied in the SSA method. However, the TSVD approximates a matrix by one of a lower 
rank in a least squares sense. The latter leads to a suboptimal performance of the SSA method when 
the data are contaminated with erratic (non-Gaussian) noise. Erratic noise is often contained in seismic 
data in the form of noise bursts, incoherent signals arising from improper geophone coupling and 
source generated noise. Trickett (2012) proposed a robust rank-reduction filtering method by iteratively 
applying Cadzow filtering on the reweighted combination of observed and reconstructed data. In this 
abstract, we use an M-estimator (Huber, 1981) to compute the reduced rank approximation of the noisy 
Hankel matrix. 

Theory 
The SSA method (Trickett, 2008; Sacchi, 2009) can be summarized as follows: 
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where H is Hankel operator. For convenience, we choose L = bN2 c+ 1 to make the Hankel

matrix approximately square (??), M! 2 CL⇥(N�L+1). Without confusion, we omit the !

in the following discussions. It’s easy to prove that rank(M) = K. The appearance of noise

in freqeuncy slice D will increase the rank of matrix M because it’s not spatial predictable.

Then, the low rank approximation technique can be applied on M to separate the signal

from noise. When there are more than one spatial dimension, the block Hankel matrix is

constructed. The rank of this block matrix is determined by the number of distinct N-D

ray parameters (??). So, the Singular Spectrum Analysis algorithm can be summarized as

follows (?):

D̂! = ARHD!, (3)

where A is anti-diagonal averaging operator, R is the truncated SVD filtering operator and

H is the Hankel operator. The rank reduction operator R is the core part of SSA, which

renders the denoising procedure. As mentioned above, rank-reduction in SSA usually use

truncated SVD (?), method based on randomized SVD (?) or method based on the Lanczos

bidiagonalization (?). All of them are least squares process. It comes from the independent

and identically distributed (i.i.d.) complex Gaussian noise assumption in the frequency

slice D. The least squares process gives too much weight to large misfit. Even a single

outlier will drag the solution to the wrong position, i.e. the breakdown point of least

squares estimate is 0. So, robust low rank approximation operator Rr is needed in SSA for
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The two factor matrices are alternatively updated with another one fixed in each weighted

Frobenius norm low rank approximation problem. The linear normal equations are solved

by the Conjugate Gradient least squares (CGLS) algorithm (??). Our synthetic and real

data examples show that the new robust Singular Spectrum Analysis method performs very

well on attenuating both the Gaussian and non-Gaussian noise with good preservation of

signal.

THEORY

Singular Spectrum Analysis

This section gives a short review of the basic idea of Singular Spectrum Analysis method.

Under linear events assumption, the time delay in t-x domain will change to phase shift

in f -x domain after the Fourier transform. This results in the frequency domain spatial

predictable property of the linear events, which is the principle for both Singular Spectrum

Analysis method and f -x deconvolution method. Here, we discuss the 2-D (t-x) data model

as an example. 3-D and 5-D data situation were extended similarly (??). The slice at

frequency ! of a noiseless data can be described by the following complex sinusoids model:

D!(j) =
KX

k=1

Ak(!)e
i!Pkj�x, (1)

where i =
p�1, j = 1, 2, ..., N is the trace index in spatial direction. There are K linear

events with distinct ray parameters Pk. Ak(!) is the complex amplitude spectrum of the

wavelet. �x is the spatial interval. The SSA method constructs an trajectory matrix,

which is usually a structured matrix such as a Hankel matrix. The trajectory matrix of the
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 is a scale parameter to make the estimate scale equivalent, K is the rank of the reconstructed 
matrix. In general, there is no closed-form solution to this problem, iteratively reweighted least squares 
(IRLS) is used to find the approximate optimal solution. The weighted Frobenius norm low rank 
approximation problem is to find the low rank matrix by minimize the following cost function: 
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removing non-Gaussian noise (outlier).

Robust Low Rank Approximation

Low Rank Approximation Problem

The rank K approximation of matrix M by least squares fitting can be represented as

follows:

min
M̂

kM� M̂k2F ,

s.t. rank(M̂) = K,

(4)

where k · kF is the Frobenius norm, kXkF =
qPm

i=1

Pn
j=1 |xij |2 for matrix X 2 Cm⇥n.

Problem 4 has an analytic solution and it’s the unique local minimum (?). This solution

is given by the truncated singular value decomposition (TSVD), which is the well-known

Eckart-Young theorem (?). Even through the solution of TSVD is simple and unique, the

quadratic function makes the solution quite sensitive to non-Gaussian distributed noise.

This drawback limits its application in realistic situation. In this paper, we investigate

more robust function to measure the distance between two matrix. The function should

increase slower than the quadratic function.
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of M. When ⇢ is not quadratic, problem 5 is a non-convex optimization problem. There is

no closed-form solution exists for this problem in general and the non-convex cost function

has local minima. These makes solving for global minimum not an easy task.
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. r is the residual vector got by reshaping the 
residual matrix. Actually, 

where r is the residual vector got by reshaping the misfit matrix from the previous iteration.

The multiplication of 1.4826 is used for adjusting the bias between MAD and standard

deviation (SD) at Gaussian noise distribution. (?) recommend to fix the robust scale

� during the iterations until the IRLS converge in their robust regression study. This is

widely adopted in robust regression studies because it’s easier for the algorithm to converge.

While, this will make the algorithm quite depends on a good initialization. It’s better for

the threshold to reduce with the iterations. The TSVD is not good for starting the iteration

because it’s quite skewed by the outliers. We choose random initialization. Here, we would

like to use the strategy that update the � using equation 20 in each iteration. According

to our simulation experiments, this scheme is very stable. For the tuning constant ↵, (?)

recommend to take ↵ = 4.685 for bisquare function to get 95% asymptotic e�ciency at

standard normal distribution. ? gives di↵erent ↵ values for di↵erent asymptotic e�ciency

at the standard normal distribution. In this paper, we choose ↵ = 4.685. The value ↵�

performs as the threshold to distinct outliers and inlierss. Smaller ↵� will penalize the

outliers more heavily which results in a more robust estimation.

EXAMPLES

In this paper, we present the synthetic examples and also a real data example to show the

e�ciency of the proposed algorithm. We compared the performance of the Robust Singular

Spectrum Analysis method with the performance of traditional SSA and f -x deconvolution.
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is the threshold to distinct outliers and inliers. In each IRLS iteration, 
problem (2) is reduced to a weighted Frobenius norm low rank approximation problem (equation (3)). 
Problem (3) can be solved by alternating minimization, which is also named criss-cross regression 
(Gabriel and Zamir, 1979). The method alternately optimizes one of the two matrices U and V with the 
other one fixed. In this way, the bilinear problem is reduced to alternately solved linear least squares 
problems. The alternating update of U and V is got by solving the following weighted normal equations: 
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Wj = diag{wj} 2 R+n⇥n is the diagonal weighting matrix containing the j th column of

W. Wi = diag{wi} 2 R+m⇥m is diagonal weighting matrix containing the i th row of
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for i = 1, 2...,m VHWiVui = VHWimi, (5)

for j = 1, 2, ..., n UHWjUvj = UHWjmj
, (6)

1

                                     

D̂! = ARHD!, (1)

(5a) (5b)

D!,!,H,
1

2
(2)

wwsd 1
2↵ = 4.685, � = 1.4826 MAD = 1.4826 med |r�med | r||

E(U,V) = ||M�UVH ||⇢ =
mX

i=1

nX

j=1

⇢

 
mij �

PK
q=1 uiqv

⇤
jq

�

!
, (3)

⇢(u) =

8
>>>><

>>>>:

1

6
↵2

8
<

:1�
"
1�

✓ |u|
↵

◆2
#39=

; |u|  ↵

1

6
↵2 |u| > ↵

, w(u) =

8
>>><

>>>:

"
1�

✓ |u|
↵

◆2
#2

|u|  ↵

0 |u| > ↵

.

(4)

1

 
where here all the vectors are column vectors; mj is the j th column of M; mi is the conjugate

transpose of i th row of M. Similarly,

U =


u1 u2 · · · uK

�
=


u1 u2 · · · um

�H
,

V =


v1 v2 · · · vK

�
=


v1 v2 · · · vn

�H
,

(15)

Wj = diag{wj} 2 R+n⇥n is the diagonal weighting matrix containing the j th column of

W. Wi = diag{wi} 2 R+m⇥m is diagonal weighting matrix containing the i th row of

W. Equation 13 has closed-form solutions, alternating update the two factor matrices by

solving the following normal equations:

for i = 1, 2...,m VHWiVui = VHWimi, (16)

for j = 1, 2, ..., n UHWjUvj = UHWjmj . (17)

Instead of using matrix inverse directly, we use the Conjugate Gradient least squares (CGLS)

(?) to solve the normal equations. The total operation order is O(GLCKmn), where C is

the iteration number of CGLS, L is the iteration number of the alternating minimization

and G is the iteration number of the IRLS.

The choice of the robust function ⇢ depends on the how many outliers are there in the

data or how robust the algorithm is desired. Redescending M-estimate is more robust than

monotone M-estimate with the price of non-convexity. In this paper, we use the Tukey’s

bisquare function (?). Biweight estimate has a high break down point, which is useful for

extreme outliers. The bisquare function in complex domain is given by:

⇢B(u) =

8
>>>><

>>>>:

1

6
↵2

8
<

:1�
"
1�

✓ |u|
↵

◆2
#3

9
=

; |u|  ↵

1

6
↵2 |u| > ↵

. (18)

11

is the conjugate transpose of the i th row of M, here all the vectors are column vectors; mj is the j th column of M; mi is the conjugate

transpose of i th row of M. Similarly,

U =


u1 u2 · · · uK

�
=


u1 u2 · · · um

�H
,

V =


v1 v2 · · · vK

�
=


v1 v2 · · · vn

�H
,

(15)

Wj = diag{wj} 2 R+n⇥n is the diagonal weighting matrix containing the j th column of

W. Wi = diag{wi} 2 R+m⇥m is diagonal weighting matrix containing the i th row of

W. Equation 13 has closed-form solutions, alternating update the two factor matrices by

solving the following normal equations:

for i = 1, 2...,m VHWiVui = VHWimi, (16)

for j = 1, 2, ..., n UHWjUvj = UHWjmj . (17)

Instead of using matrix inverse directly, we use the Conjugate Gradient least squares (CGLS)

(?) to solve the normal equations. The total operation order is O(GLCKmn), where C is

the iteration number of CGLS, L is the iteration number of the alternating minimization

and G is the iteration number of the IRLS.

The choice of the robust function ⇢ depends on the how many outliers are there in the

data or how robust the algorithm is desired. Redescending M-estimate is more robust than

monotone M-estimate with the price of non-convexity. In this paper, we use the Tukey’s

bisquare function (?). Biweight estimate has a high break down point, which is useful for

extreme outliers. The bisquare function in complex domain is given by:

⇢B(u) =

8
>>>><

>>>>:

1

6
↵2

8
<

:1�
"
1�

✓ |u|
↵

◆2
#3

9
=

; |u|  ↵

1

6
↵2 |u| > ↵

. (18)

11

 is the j th column of M. Similar denotation 
is used for matrices U and V. 

here all the vectors are column vectors; mj is the j th column of M; mi is the conjugate

transpose of i th row of M. Similarly,

U =


u1 u2 · · · uK

�
=


u1 u2 · · · um

�H
,

V =


v1 v2 · · · vK

�
=


v1 v2 · · · vn

�H
,

(15)

Wj = diag{wj} 2 R+n⇥n is the diagonal weighting matrix containing the j th column of

W. Wi = diag{wi} 2 R+m⇥m is diagonal weighting matrix containing the i th row of

W. Equation 13 has closed-form solutions, alternating update the two factor matrices by

solving the following normal equations:

for i = 1, 2...,m VHWiVui = VHWimi, (16)

for j = 1, 2, ..., n UHWjUvj = UHWjmj . (17)

Instead of using matrix inverse directly, we use the Conjugate Gradient least squares (CGLS)

(?) to solve the normal equations. The total operation order is O(GLCKmn), where C is

the iteration number of CGLS, L is the iteration number of the alternating minimization

and G is the iteration number of the IRLS.

The choice of the robust function ⇢ depends on the how many outliers are there in the

data or how robust the algorithm is desired. Redescending M-estimate is more robust than

monotone M-estimate with the price of non-convexity. In this paper, we use the Tukey’s

bisquare function (?). Biweight estimate has a high break down point, which is useful for

extreme outliers. The bisquare function in complex domain is given by:

⇢B(u) =

8
>>>><

>>>>:

1

6
↵2

8
<

:1�
"
1�

✓ |u|
↵

◆2
#3

9
=

; |u|  ↵

1

6
↵2 |u| > ↵

. (18)

11

is a diagonal matrix with i th row of W on the diagonal. Here, we use 
Conjugate Gradient least squares (CGLS) (Paige and Saunders, 1982) to solve the weighted normal 
equations. The robust low rank approximation algorithm is summarized as follows: 
(1) Initialize models U and V. 
(2) Calculate weighting matrix W using weighting function in equation (4). 
(3) Update factor matrix U by solving normal equations (5a). 
(4) Update factor matrix V by solving normal equations (5b). 
(5) Iterate steps (3)-(4) until convergence or achieve a maximum iteration number. 
(6) Iterate steps (2)-(5) until convergence or achieve a maximum iteration number. 

Examples 
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A synthetic example (Figure 1) is used to evaluate the performance of the robust SSA method. Its result 
is compared with the results of least squares SSA and f-x deconvolution. The data consists of three 
linear events, erratic noise (with amplitude 2 and 3 times the max amplitude of wavelet) and smoothed 
Gaussian noise with SNR equals to 1. U and V are started with random matrices and the rank K is 
selected to be 3. We can see that the results of f-x deconvolution and SSA are not acceptable. 
However, robust SSA method can resist the erratic noise. Also, it’s efficient for attenuating Gaussian 
noise. Besides, it inherits the merit of the traditional SSA that it preserves the signal. 

0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e 
(s

)

10 20 30 40
Trace number(a)

0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e 
(s

)

10 20 30 40
Trace number(c)

0

0.2

0.4

0.6

0.8

1.0

1.2

10 20 30 40
Trace number(e)

0

0.2

0.4

0.6

0.8

1.0

1.2

10 20 30 40
Trace number(g)

0

0.2

0.4

0.6

0.8

1.0

1.2

10 20 30 40
Trace number(b)

0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e 
(s

)

10 20 30 40
Trace number(d)

0

0.2

0.4

0.6

0.8

1.0

1.2

10 20 30 40
Trace number(f)

0

0.2

0.4

0.6

0.8

1.0

1.2

10 20 30 40
Trace number(h)

 
Figure 1: (a) Noise free data. (b) Data corrupted with erratic noise and Gaussian noise (SNR=1), (clipped, clip=1). 
(c) Result of f-x deconvolution. (d) Difference between (b) and (c). (e) Result of SSA. (f) Difference between (b) 
and (e). (g) Result of the robust SSA. (h) Difference between (b) and (g). 
 
The newly proposed method is also tested on a real data set. The seismic section contains with 800 
traces. The data are divided in overlapping windows. The rank for reconstruction is selected to be 2. 
Figure 2 (a) shows a part of the data. Figure 2 (b) shows the result of f-x deconvolution. Figure 2 (c) 
shows the result of least squares SSA. Figure 2 (d) shows the result of robust SSA. We can find that 
both f-x deconvolution and SSA method have problems in handling the erratic noise. In contrast, robust 
SSA performs very well in the presence of the erratic noise.  

Conclusions 
In this abstract, we propose a robust singular spectrum analysis method which can remove Gaussian 
and non-Gaussian noise. A robust low rank approximation is used in the new method instead of the 
traditional truncated SVD. The robust low rank approximation is obtained by considering the 
representation of the original Hankel matrix in the SSA method in terms of a low rank approximation 
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under the bisquare norm. Synthetic and real data examples demonstrate the efficiency of the new 
proposed algorithm.  
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Figure 2: (a) A portion of a real data set contaminated with erratic noise. (b) Result of f-x Deconvolution. (c) Result 
of SSA. (d) Result of robust SSA. 
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