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Summary  

In this work we combine principles of vector (multi-component) processing with those of conventional 
dip filters in a way that handles irregular spatially sampled data as well as non-stationarity in time and 
frequency. The result is a method to estimate the dominant local (in time, frequency and spatial 
coordinates) polarization and dip properties in multi-component seismic data. We then adapt this 
method to create a multi-component dip filter that removes unwanted ground roll noise from the data.  
Local dip is estimated using data from all 3 components simultaneously. If noise dips are detected, a 
3C estimate of the noise is calculated and subtracted from the data. Our filter is tested on a realistic 3C 
synthetic with dispersive elliptically polarized surface wave noise in the presence of PP and PS 
reflections and random background noise. 

Introduction 

Geophysicists have access to a multitude of tools to attenuate surface wave noise. Most of these tools 
exploit lateral coherency between groups of traces - so called dip filters. Examples of these filters 
include FK, FX, radon, rank reduction and any 3D extension of the above. The advent of multi-
component data also led to the development of vector-type filters that utilize polarization properties to 
distinguish signal and noise using all recorded components. Unfortunately, many of these techniques 
have in common that they poorly handle non-stationarity. Any frequency domain filter typically does not 
recognize that the frequency content of seismic signal and noise changes with time. It assumes time 
domain stationarity. And, likewise any time-domain (‘sliding window’) filter typically ignores that signal 
and noise properties change as a function of frequency. It assumes stationarity in the frequency 
domain. Here, we lay out the framework for vector (multi-component) dip filtering that handles non 
stationary naturally in both the time and frequency domain. In short, we estimate the local (in time, 
frequency and space) polarization and dip properties of the data and use this information to remove 
unwanted signals. 

Theory: Vector dip estimation and filtering in the S-domain 

Central to our method is a data transform that provides time variant spectral estimates. While many 
such transforms are available in the literature we chose the S-transform for a number of reasons that 
we will explain next (Stockwell et al., 1996). The S-transform is closely related –and could be 
considered the ultimate extension of - the short-time Fourier transform and the Gabor transform. It also 
shares many properties with wavelet transforms. The main difference is that the wavelet transform 
works in scales as opposed to frequencies and that it does not provide absolute phase information 
(Brown et al., 2010). Absolute phase infromation is desirable when designing dip filters for irregularly 
spatially sampled data. Like the Gabor transform, the S-transform uses a Gaussian window to localize 
the spectral information. Contrary to the Gabor transform however, the S-transform does not use a 
fixed Gaussian window for all frequencies, but one that scales as a function of frequency. As such it 
aims to achieve an optimal balance between temporal and frequency resolution. Shorter Gaussian 

mailto:Anemail@address.com


  
 

GeoConvention 2013: Integration 2 

windows are used to estimate the amplitude and phase of higher frequencies while longer Gaussian 
windows are used to estimate the low frequency properties of the data. The continuous definition of the 

S-transform S(,f) of a time series s(t) is given by:  
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The scalar and the real exponent in this equation define the Gaussian window and the complex 
exponent is simply the Fourier kernel. The S-transform has a number of desirable properties that make 
it particularly useful for the purpose of multi-component or vector dip filtering. First, it is easily invertible. 

Integrating or summing S(,f)  over the time axis will yield the Fourier spectrum F(f) of the input signal. 
So one easy way to implement filtering in the S-domain is to omit or zero out samples in the integration 
so that the resulting Fourier spectrum is void of information from the unwanted signal. A more complete 
and relevant description of filtering options in the time-frequency domain can be found in Margrave 
(1998). Second, any time-slice of the S-transform behaves exactly like a Fourier transform. So, in 
principle any FX(Y) type dip filter can be modified to handle non-stationary simply by replacing the input 
Fourier spectrum with a time slice of the S-transform. Third, Pinnegar (2006) demonstrated it is 
possible to perform polarization (vector) filtering in the S-domain so that an extension to vector dip 
filtering becomes fairly straight forward. Finally, while it can be computationally expensive to compute 
the S-transform and filter in this domain, Brown et al. (2010) introduced a sampling scheme that 
significantly reduces computational costs, especially for low-frequency noise problems. So basically, 
everything that is required to achieve computationally efficient vector dip filtering in the time-frequency 
domain is well documented in the literature and one only needs to put the different techniques together.  

 

To describe our vector dip filter we start by defining the a local data-matrix D(x,f,). This 3 by N matrix 

contains S-transform spectral estimates  τ,fS  for a chosen time () and frequency (f) and for all three 

components (r, t and z) of N selected traces (x). The trace at the center of the matrix is the one for 
which the dominant local dip will be estimated and all N-1 other traces that make up D are selected 
from within a shot or receiver gather or cross spread. N is typically between 3 and 21 and traces are 
selected from within the vicinity of the trace at the center and which is denoted by the subscript c. We 
work in polar coordinates (offset-azimuth) so that our definition of D applies to both 2D and 3D gathers. 
We also assume that traces in D are sorted by increasing offset: 
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Next we cross correlate the last N-1 columns of D with the first N-1 columns to obtain: 
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The phase angles Δ contain information on the velocity and this information can be extracted from X 
in various ways. Here, we propose a very simple approximation assuming a single local dip in the 
presence of background noise. This is reasonable given that X relates to a localized portion of the data: 
a specific frequency, time and spatial coordinate. If surface wave noise is present we assume it is the 
dominant signal and hence, most of the energy in X will be related to the noise. If no surface waves are 
present then X will be dominated by velocity information from reflected energy. The phase angles 𝜑𝑖+1,i 

are a function of the offset difference Δxi+1,i and the local angular wave number ki+1,i so that 𝜑𝑖+1,i=𝑘𝑖+1,𝑖 
∆𝑥𝑖+1,𝑖. We do not assume regular spatial sampling so that the offset differences Δxi+1,I are allowed to 

vary between columns of X. The wave number relates to local velocity V through: 𝑉=2𝜋𝑓𝑘-1. The local 
velocity can thus be recovered from the average angular wave number which is: 
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Note that our definition uses three components (r, t and z), but in principle it is valid for any number of 
components, including conventional 1C data. It is also possible to assign weights to the sine and cosine 
terms. For example, if these weights are derived from the amplitude terms d for each component then 
this will effectively reduce the importance of the transverse component in the averaging. This would be 
desirable considering that the transverse component typically contains very little coherent signal and 
noise. Figure 1 shows a synthetic data example where we demonstrate the ability of our method to 
estimate local dip. The left panel in Figure 1 shows linear dips computed using a 3D shot gather with 50 
m receiver spacing and 180 m receiver line spacing. A bandpass filter with corner frequencies of 
2,3,7,9 Hz was applied. The middle panel shows the 5Hz S-transform amplitude spectrum of the data. 
The panel on the right shows the local (instantaneous) velocity at 5Hz. The data window is 9 traces 
long, effectively making this a 2D receiver line estimate. 

 

   
Figure 1 

Figure 1: (Left) synthetic seismic data consisting of 8 linearly dipping events with 5Hz center frequency computed 
using a real 3D shot geometry with 50 m receiver spacing and 180 m receiver line spacing. The modeled linear 
events are sampled at 2ms and have intercepts and velocities of 500ms-Infinite, 900ms-4000 m/s, 1200ms-2000 
m/s, 1500ms-1000 m/s, 1750ms-666 m/s, 2000ms-500 m/s and 2250ms-333 m/s. (Middle) S-transform 5Hz 
amplitude spectrum sampled at 200ms (1 period). (Right) 5Hz local velocity estimate derived from the 5Hz S-
transform spectrum using Equation 4. The color map ranges between 0m/s (blue) and 5000m/s (red). All 
velocities can be recovered except that of the 333 m/s event due to severe spatial aliasing (more than ½ period) 
at a 50m station interval. 
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Now that the local velocity is known we can use this to estimate the vector v through slant stacking. To 

do this we multiply the data-matrix D with a dip-steering vector 
k

s  and obtain:  
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H denotes the Hermitian or complex conjugate transpose. If we assume that there are no variations in 
noise amplitude with offset then the elements in v can serve as estimates for the 3C trace at the center 

of D. The amplitude zcd  and phase zc  of the element in v that corresponds to the vertical component 

would serve as an estimate for the trace at the center of D. To accommodate amplitude variations with 
offset we can choose to retain only the phase of v and compute the least-squares estimates of the 

amplitudes cd for the trace at the center. For the vertical component we get   
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between the estimated and observed spectral sample. Similar expressions can be derived for the radial 
and transverse components.  

 

We have also implemented an alternative approach to estimating local dip (velocity) and polarization 
properties and which involves computing the singular value decomposition (SVD) of the data matrix D. 
The left singular vectors can be interpreted as polarization vectors while the right singular vectors can 
be used to obtain local velocity estimates. Note that X in equation (3) would simply reduce to a 1 by n-1 
vector when applied to the right singular vectors. One advantage of using the SVD approach is that it 
effectively decomposes D into the superposition of 3 (in the case of 3C data) independent signals that 
can be analyzed separately. This would increase our ability to separate the dominant surface wave 
noise signal from additive reflection and random noise energy in D. 

Examples 

To test our method we generated a synthetic 3D 3C shot gather using the same geometry as that used 
for Figure 1. The vertical component contains 4 P-wave reflection events (4Hz–40Hz) while the radial 
component contains an equal number of PS reflection events (4Hz–25Hz). Elliptically polarized 
dispersive ground roll (3Hz-10Hz, 500m/s – 800m/s) is modeled on the vertical and radial components 
and random noise is added to all three components (Figure 2). The ground roll noise estimates 
obtained for each component and using the least squares method described in this abstract are shown 
in Figure 3. Our filter operated in the frequency band defined by a 1Hz-2Hz-12Hz-17Hz Ormsby filter 
and removed noise with velocities between 300m/s and 1000m/s. Subtracting the noise estimates in 
Figure 3 from the data in Figure 2 results in the filtered data in Figure 4. While some residual ground 
roll can be observed the PP and PS reflection signal remains largely untouched. We anticipate that the 
filtering could be improved upon further using adaptive subtraction. The residual ground roll is a direct 
consequence of our least squares estimation of the noise which is aimed at preserving reflection signal 
at the cost of missing some portion of the coherent noise. Figure 5 contains the local dominant velocity 
estimates that were used by the filter to estimate the noise. Velocities for frequencies of 5Hz, 7Hz and 
9Hz are shown. The colors range between 200m/s (blue) and 1100m/s (red). The ground roll is typically 
identifiable by colors ranging from green-yellow-orange. Velocities related to reflection signal are 
typically identifiable as red whereas random noise appears mainly in blue. Comparing velocities from 
different frequencies clearly shows the dispersive nature of the coherent noise.   
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Figure 2: Synthetic 3D 3C shot gather with coherent dispersive ground roll and random noise. (Left) The vertical component contains 4 P-wave events 
in the presence of coherent and random noise. (Middle) The radial component contains 4 PS-wave events in the presence of coherent and random 
noise. The ground roll elliptically polarized. (Right) The transverse component contains random background noise only. 

 
Figure 3: Noise estimates for the Vertical (left), Radial (middle) and Transverse (right) components. Even though strong 3C noise is detected the 
polarization properties of that noise are correctly predicted which is evident from the lack of significant predicted noise on the transverse (right). 

 
Figure 4: Filtered vertical (Left), Radial (Middle) and Transverse (Right) data. These results are obtained after direct subtraction of the data in Figure 2 
and the noise in Figure 3. 
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Figure 5: Instantaneous, local 3C velocity estimates calculated by our filter and used to model the noise. Velocity 
estimates for frequencies of 5Hz, 7Hz and 9 Hz are shown. The color bar ranges between 200m/s (blue) and 
1100m/s (red). The ground roll is clearly identifiable by colors ranging from green (600m/s) over yellow (800m/s)  

Conclusions 

In this paper we introduce the concepts multi-component vector dip filtering in the time-frequency 
domain. The resulting filter can handle any number of recorded components, non-stationary and 
dispersive noise and estimates frequency dependent local (in time and spatial coordinate) velocity 
estimates. Encouraging results are obtained when testing this filter on a realistic 3C synthetic with 
dispersive elliptically polarized surface wave noise in the presence of PP and PS reflections and 
random background noise. We have also tested the method on real data with encouraging results and 
for which show rights are pending. 
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