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Summary 

In numerous algorithms for finite-difference modeling of seismic waves, the effects of attenuation are 
described by using memory variables. However, the physical meaning of memory variables and their 
limitations may be somewhat difficult to see, and they can be difficult to generalize for different types of 
attenuation, such as the one in poroelastic media. Here, we propose a different approach to memory 
variables, based on Lagrangian description of the rheological model called the Generalized Standard 
Linear Solid (GSLS). This approach allows treating the memory variables in a physically natural and 
interpretable way, and very similarly to the usual strain and stress. Such variables can therefore be 
readily generalized to other mechanisms of internal friction. Based on this approach, stress-strain 
relaxation laws for two types of deformation are derived. For a GSLS, the solutions are identical to 
those obtained by using the conventional approach.  

Introduction  

Numerical modeling is the key tool for extracting detailed information from seismic data, particularly in 
the presence of inelastic effects. Forward modeling is broadly utilized in seismic exploration, including 
acquisition system design, seismic migration, interpretation, and full waveform inversion. In the last of 
these applications, the accuracy of the modeling technique is critical. Although many techniques for 
seismic forward modeling have been developed, the finite-difference (FD) method is currently the most 
popular one, because of its ability to accurately model the seismic wave propagation in arbitrary 
heterogeneous media. The FD approach is especially suitable for modeling elastic seismic waves in the 
time domain.  

In the existing viscoelastic approach, FD modeling of the inelastic effects presents some problems, 
because it requires knowledge of the entire time history of the material and evaluation of convolutional 
integrals in time. This problem was solved by Day and Minster (1984) and Carcione et al. (1988), who 
introduced additional variables, which are often called 'memory variables' now. Based on such memory 
variables, several FD codes, for 2-D and 3-D, viscoacoustic and viscoelastic seismic modeling were 
created (e.g., Robertsson et al., 1994; Bohlen, 2002). In all of these cases, the central question in FD 
modeling of energy dissipation is the construction of memory variables. 

The memory variables by Day and Minster (1984) and Carcione et al. (1988) arise from postulating an 
anelastic stress-strain response of the material and approximating it by the Generalized Standard 
Linear Solid (GSLS). Such systems are often illustrated by combining multiple dashpots and springs 
(Figure 1). As shown below, in such an arrangement of mechanical elements, memory variables can be 
interpreted in a rather specific manner. Here, we propose a different approach to memory variables, 
which makes them closer to the first physical principles, more interpretable, and also much more 
general. We use Lagrangian mechanics to fully describe the model and produce all equations of motion. 
The new memory variables also allow straightforward extensions of the linear dissipation model to non-
linear viscosity and other rigorous dissipation mechanisms.  
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Below, we briefly introduce the Lagrangian form of memory variables, illustrate their application to a 
single GSLS body, and compare them to Carcione’s et al. (1988) approach. We also give two models of 
laboratory measurements of attenuation on a GSLS.  

Theory 

The GSLS model is generally considered suitable for explaining laboratory measurements of 
mechanical-energy dissipation in rock creep under stress, and it is used in many FD modeling 

algorithms (e.g., Carcione et al., 1988; Robertsson et al., 1994; Bohlen, 2002). Figure 1 shows a GSLS 

composed of N Maxwell bodies connected in parallel with a spring k . Note that from the viewpoint of 

Lagrangian mechanics of continuous media, such diagrams should be understood as representations 
of the structure of the Lagrangian. With no Maxwell bodies (N = 0), the Lagrangian represented by the 
single “k” symbol in Figure 1 is (Landau and Lifshitz, 1986): 
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where iu is the displacement vector, ik  is the corresponding strain tensor (both indicated by the 

“external”, observable variable e ),   is the density,  and  are the Lamé moduli of the medium, and 

summations over all repeated indices are implied. With  Maxwell bodies added, if we denote their 

internal displacements by  Jku  and strains by Jik (both shown by Je  in Figure 1), then the natural 

extension of the Lagrangian of the system is: 
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where the subscript “ J ” is the counter of Maxwell bodies,  and J  and 

J are their Lamé parameters (shown as “springs” Jk in the diagram). 

In this expression, we also allow some densities, J , to be associated 

with the internal variables. Similarly, the internal friction depicted by the 

“dashpots” J in Figure 1 corresponds to the dissipation function 

(Landau and Lifshitz, 1986): 
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where J and  are the viscosity parameters for dilatation and shear 

associated with dissipation in Maxwell bodies. 

 

Our approach to implementing a FD scheme for viscoelastic waveform 

modeling simply consists in using displacements Jku as the variables 

responsible for energy dissipation. The equations of motion for these 

variables are similar to those for the “external” displacement iu , and 

follow from the Euler-Lagrange equations (Landau and Lifshitz, 1986): 
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where Ji iq u for 0J  and Ji Jiq u for 0J  . These equations for the 

internal variables are very similar to those for the “external” field and 
can be readily implemented in the FD form. 

 
Figure 1.GSLS model. 

Parameters ik  are the 

spring constants and i are 

the corresponding viscosities 

of N Maxwell bodies 

connected in parallel with the 

main elastic spring k . The 

model can also be viewed as 

N Standard Linear Solids 

connected in parallel. 
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Comparison to memory variables 

The physical meaning of variables 
Jku as deformations of the internal springs is clear from the structure 

of the Lagrangian (Figure 1). The meaning of the traditional memory variables (Carcione et al., 1988) is 

somewhat more elaborate. Let us illustrate it on the example of a massless system ( 0, 0J   ) to 

which a time-dependent, spatially uniform and pure axial stress  t  is applied. This model describes 

the typical creep or phase-lag attenuation testing of rock samples in the lab. The deformation of this 

system is described by a single “external” (measured) variable  e t and N internal variables  Je t  

(internal strain of the springs in Maxwell bodies in Figure 1), and the (L, D) pair simplifies to: 
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where 1,2,...,J N , and the external force term  t e  is added to the Lagrangian (Landau and Lifshitz, 

1976).  The equations of motion (4) for this system become: 
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with strains at time t = 0 equal      0 00 0 0J U Ue e e k k     , where 
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“unrelaxed” spring constant. 

From the second eq. (5), the relationship between the external strain and the internal strain can be 
written in an integral form: 
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where J J Jk  is the relaxation time for the 
thJ  Maxwell body.  

Eq. (7) is a time convolution which can be viewed as a retarded response of strain  J
e t  to variable 

 e t . Note that such relation is only possible because the internal variables in the GSLS are taken as 

massless. Further, from the first eq. (5), the stress-strain relation can be described in terms of both the 

“relaxed” (k) and unrelaxed spring constants ( Uk ):  
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Comparing the last of these relations to the similar relation using memory variables (eq. (26) in 

Carcione et al., 1988) shows that the 
thJ memory variable in this case equals:  ( )J J Jp t k e e   . 

Thus, the conventional memory variables can be interpreted as the reductions of stresses produced by 
the internal springs, resulting from the deformations of the dashpots. By comparison, our internal 

variables are simply the deformations Je , which are (in principle) measurable, can be understood similar 

to the external deformation e and obey similar equations of motion. In addition, the use of memory 

variables  Jp t implies the knowledge of the “unrelaxed” modulus Uk , whereas the Lagrangian variables 

Je interact with the usual elastic modulus k . 
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Examples 

Let us illustrate the behaviour of FD internal variables 
Je on the deformation of a single GSLS body.  

Figure 2 shows the quality factor for a GSLS containing five Maxwell bodies (Table 1), as a function of 
frequency (O’Connell and Budiansky, 1978). The parameters of the body are selected so that 

100Q  within the frequency band from 0.01 Hz to 100 Hz. Note that the number of Maxwell bodies can 

be counted by the peaks in Q-1shown in this Figure.  

To understand the behavior of the memory variables, we consider two different cases similar to creep 

testing of rock samples in the lab. First, under a step in stress,    0t H t   (where  H t is the 

Heaviside function), the “external” strain shows an instantaneous increase
0e  followed by an 

exponential creep (Figure 3a). The empirical modulus of the GSLS system,      M t t e t , 

decreases with time 

 

from unrelaxed 0 0UM e  to relaxed  0RM e t  .These effects occurs because of the 

internal strains decreasing from 0e to zero (Figure 3b). Because of the different viscosities, the strain 

rates for these five Maxwell bodies are very different. Note that the lowest-viscosity Maxwell bodies are 
less separable in such deformation (nearly overlapping purple, and blue lines in Figure 3b), and the 
time for the external strain almost equals that of the Maxwell body with the highest viscosity (black line 
in Figure 3b).  

Similar conclusions arise from testing by a step in strain (    0e t e H t ; Figure 4).The empirical 

modulus of the system with constant strain shows a similar (somewhat faster) decrease from the level 

of UM to RM with time (Figure 4a). However, the five Maxwell bodies deform independently in this case 

(Figure 4b). Thus, both constant-stress and constant-strain relaxations occur through a decrease of the 

internal strains. This leads to a decrease of the internal energy    2
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Conclusions 

We showed how the memory variables used to represent anelastic responses in finite-difference (FD) 
modeling can be obtained from Lagrangian mechanics. The Lagrangian description leads to new 
“internal strain” variables, which are simpler and physically more meaningful than the conventional 
memory variables and allow generalization to any types of internal friction. This description is also 
accurate, and allows a straightforward FD implementation. Examples of constant-strain and constant-

Table 1. Parameters of 

Maxwell bodies in the GSLS 
model 

J  J
k (MPa) 

J
 (Pa

.
s) 

k  
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2 

3 

4 

5 

1000 

15 

15 

15 

15 

15 

 

9.3
.
10

9 
9.3

.
10

8 
9.3

.
10

7 
9.3

.
10

6 
9.3

.
10

5 

 

 
Figure 1. Dissipation factor as a function of 

frequency for a GSLS model with five Maxwell 
bodies. 
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stress deformations show that the relaxation occurs through the decrease of the internal strains with 
time.  
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Figure 3 

Relaxation of a GSLS under constant stress: a) the 
external strain; b) the strains of the internal springs. 
The five lines in (b) indicate the five Maxwell 
bodies, with viscosities increasing from purple to 
black colours. 

 
Figure 4 

Relaxation of a GSLS under constant strain: a) 
Variation of total stress; b) the strains in the 
internal springs. Inline colours in (b) denote the 
five Maxwell bodies, as in Figure 3. 


