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Summary 

We describe a frequency domain waveform inversion for microseismic source mechanism in 
anisotropic media that combines the efficiency of ray theory with the accuracy of waveform fitting.  
Rather than inverting for the moment tensor as described previously (Leaney et al., 2011), we invert for 
the potency tensor.  The source potency tensor is the moment tensor contracted with the compliance 
tensor of the medium local to the source and has several advantages.  Firstly, it contains none of the 
distorting effects of anisotropy, which may alter characteristic source angles and produce false non- 
double couple components in the moment tensor, even for a pure slip source; secondly, it allows the 
source to be decomposed in units of volume, rather than moment.  In its simplest form, potency tensor 
inversion remains a linear problem, with the source medium properties absorbed into the strain Green 
function.  Posterior covariances are more closely related to the source parameters of interest, free from 
anisotropic distortion.  We review the method and demonstrate the advantage on a synthetic case. 

 

Introduction 

It is well known that anisotropy local to an event can distort source attributes of interest (e.g. Julian et 
al., 1998).  Anisotropy can cause non-double components in the moment tensor, even for a pure slip 
source, and can rotate TNP axes and associated strike, dip and rake angles (e.g. Leaney and 
Chapman, 2010).  These distortions can be obviated by decomposing the potency tensor rather than 
the moment tensor (Chapman and Leaney, 2012).  The term potency tensor was first introduced by 
Ben-Menahem and Singh (1981) and was subsequently used by Heaton and Heaton (1989) and Ben-
Zion (2001) wherein it was argued that it was superior to the moment tensor as a source descriptor as it 
does not depend on the properties of the medium local to the event.  In fact the concept of the potency 
tensor was essentially contained in much earlier work (e.g. Eshelby, 1957). 

 

Chapman and Leaney (2012) (eq. 86) write the moment tensor as 

 

   [ ]       

 
 [ ]    ̂ ̂   ̂ ̂ ,     (1)   

 
where [ ] is the volume change due to an isotropic pressure change in a cavity,     is the embedded 
anisotropic bulk modulus, and the second dyadic term describes a moment tensor source due to a 
displacement discontinuity (DD), across a fracture with unit normal  ̂.    is the area on the fracture 

where displacement of total amount (length) equal to [ ] has occurred.  The unit displacement vector  ̂ 
need not lie in the plane of the fracture so that both opening and slip are included in the DD source 
term.  Since opening produces an isotropic moment term, if opening is present then the total volume 
change is split between fracture opening and isotropic pressure change.  We note that Vavryčuk (2005) 
considered focal mechanisms in anisotropic media but omitted the first term in (1).   
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Chapman and Leaney (2012) (eq. 87) write the potency tensor as 

 

       [ ]       

 
 [ ]  ̂ ̂   ̂ ̂ ,     (2)  

 
where   is the compliance tensor, the inverse of the stiffness tensor at the source, and   is the 

hydrostatic pressure modulus tensor, equal to 
 

     
  in an isotropic medium.  Notice that the units of 

(2) are    or volume.  In (2) [ ] is the isotropic dilatation or volume change.  In an anisotropic medium 
an isotropic dilatation would require a complicated source mechanism, and while we prefer a source 
model that admits an isotropic pressure source in a cavity together with a DD source as in (1), to keep 
the inverse problem linear we presently consider an inversion for the potency tensor source described 
by equation 2.  A hybrid linear+nonlinear inversion for potency tensor and isotropic pressure source will 
be discussed elsewhere. 
 

In what follows we review the ray+waveform inversion method (Leaney et al., 2011) with the 
modification of inverting for the potency tensor.  We illustrate the advantages of a potency tensor 

inversion by comparing source parameters computed from random perturbations of   and   for a pure 
slip source in an anisotropic medium. 

 

Theory and Method 

Consider far-field vector recordings of particle velocity at angular frequency  ,           , at receiver 

location    for a source at location    in terms of the potency tensor     .  In the geometrical ray 

approximation (Chapman, 2004): 
 

 (       )       {[∑  ̂ (     )  (       )    
    
 ]     }                           (3) 

 
where       is the response of receiver   to displacement signals at   .  In (3)  ̂  is the polarization 

vector at the receiver for ray   connecting source and receiver,    is the scalar ray propagation term 
corresponding to the third-order strain Green function, and      ̂ ̂   ̂ ̂    is the second-order ray 
strain tensor at the source with  ̂ the normalized phase slowness vector and  ̂ the polarization vector.  

The symbol   signifies the scalar product between tensors.    is the elastic stiffness tensor at the 
source, now grouped with medium-related terms rather than the source.  All terms inside the square 
brackets come from the model and ray tracer.  Anisotropy impacts not only the source radiation pattern 

(           ) and receiver polarization vector but also the propagation terms hidden inside   – 
times, spreading and transmission loss, and source and receiver impedance coupling terms.  Not 
shown in (3) is a term for anelastic absorption due to Q.  For this a practical approach is adopted, with 
Q values per layer and ray type (qP, qSv, Sh) rather than a full anisotropic Q treatment.  The ray tracer 
returns the average Q for each ray signature and a Futterman-type absorption-dispersion model is 
used. The sum over rays may include mode conversions, reflections, internal multiples and head waves 
in addition to direct arrivals. 
 
By invoking the isomorphism between second rank tensors and vectors, and using the modified Voigt 
matrix representation for the 4-th rank stiffness tensor,  , equation (3) can be written in matrix-vector 

form as     .  It is solved at each frequency for the six-vector of potency tensor terms using the 
generalized inverse,    , computed using a complex SVD routine.  The inversion process can be 
viewed as vector beam-forming, or least-squares time reversal (Leaney, 2008), yielding the estimated 
      each convolved with its own source function.  While the study of different source functions for P 
and S arrivals is of interest (Eaton et al., 2012), we seek a real, frequency-independent potency tensor 
and a single source function.  Constraining all six elements of   to have a common source function is a 
nonlinear problem, so to avoid this we estimate a single source function from estimated      as the 
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maximum variance signal using complex principal component analysis (e.g. Freire and Ulrych, 1988).  
A weighted deconvolution using this estimated wavelet then leaves the potency tensor.  Sacchi (Pers. 
Comm. 2008) pointed out the similarity of this to an RTM imaging condition. 
 
While linear inverse theory provides a way to calculate uncertainties in estimated parameters, posterior 
uncertainties in the elements of   (or  ) are of little use as for source interpretation we are interested 
in the uncertainties in derived parameters such as the amount of slip and opening, strike and dip 
angles, etc.  These parameters are derived from the eigen analysis of the second rank tensors and 
while error propagation is possible (Han et al., 2007) here we adopt a Monte Carlo approach to study 
posterior uncertainties using the posterior covariance matrix from linear inverse theory.  The covariance 
matrix for the estimated elements of   (or  ) is given, in its simplest form for a diagonal data 
covariance matrix (e.g. Aster et al. 2005, eq 4.56) , by 
 

     
 [   ]        (4) 

 
which can be used to construct multivariate normal random deviates about the maximum likelihood 
solution honoring the resolving power of the experimental set-up and the noise in the data.  Aster et al. 
(2005) in appendix example B.10 provide a recipe for computing a multivariate normal distribution using 
the Cholesky decomposition of the covariance matrix. 
 

Examples 

We illustrate the ideas described in the previous sections via a synthetic example where the source is a 
pure slip source, the medium is a 1D layered VTI medium and the recording geometry comprises two 
12-level vertical arrays.  The event location is significantly off the plane defined by the receiver arrays 
so that all six elements of the moment or potency tensor are resolved; the condition number for this 
experimental set-up is 18.  Equation 3 with an exact layered VTI ray tracer is used for forward 
modeling.  The source function used is a Brune pulse with corner frequency fc=500Hz; velocity 

geophones are assumed.  The source is a pure slip source with potency  [ ]        , strike=N20E, 
dip=40 (plane normal up from horizontal, so plane dipping down to the right looking in the strike 
direction) and rake=60 (up counter-clockwise from horizontal, meaning predominantly reverse or thrust 
with a left lateral component).  The elastic properties of the medium local to the source are: Vp=4km/s, 
Vs=2.3km/s, density=2.5gm/cc, e=.33, d=.20, g=.43, a constant Q=100 is used for P, Sh and Sv.  An 
effective isotropic medium can be constructed from the anisotropic moduli using, for example, the 
mean-squared velocity averaged over all directions (Chapman, 2004, exercise 4.6).  For this medium 
the rms isotropic velocities are Vp=4.63km/s and Vs=2.61km/s.  Using this shear velocity in the shear 

modulus of the medium the moment magnitude of this event is        . 

 

Figure 1 shows P, Sh and Sv radiation patterns (      ) computed versus phase angle for the pure 
slip source described above in the anisotropic medium and isotropic medium.  Amplitudes are 
displayed on the upper hemisphere in equal area so that vertical Up is in the center and horizontal is 
around the edges of the circle.  A conventional isotropic moment tensor inversion would assume the 
radiation patterns shown on the bottom row; our potency tensor inversion accounts for the distortion 
due to anisotropy, allowing for the correct recovery of source geometry free from anisotropic distortion. 

 

Figure 2 shows synthetic ENU (East, North, Up) waveforms with additive Gaussian noise with standard 
deviation equal to .05 times the maximum amplitude.  The particle velocity signal plus noise was 
bandlimited to 3-800Hz.  The reconstructed ENU data are shown after inversion for the potency tensor 
and source function.  The time domain source function is shown in the right-most panel, and as it is 
recovered at t0 by the time reversal inversion it has been shifted to the minimum P arrival time for 
display.   
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Figure 1: Upper hemisphere equal area P, Sh, Sv (left to right) radiation patterns in an anisotropic (VTI) medium (top row) and 
in an isotropic medium (bottom row) for the same slip source with equal potency. 

 

For real data, several additional processes are needed.  First, since this is waveform inversion, the 
model must be able to reproduce real data kinematics to within a half-period, with residuals handled by 
a correlation-based direct arrival static computation.  Initial model building utilizes sonic and density 
data smoothed and blocked following a wavelength criterion.  VTI model calibration is done using 
interactive sliders (Woerpel, 2010) and with a linearized inversion (Mizuno et al., 2010) incorporating 
soft rock physics -based constraints or measured sonic anisotropy to drive layer anisotropy.   Special 
attention is given to pick any Sv arrivals visible on perforation shots and include them in velocity model 
inversion.  Finally model validity is checked not only on perforation locations but on moveout 
reproduction of high SNR events.  Once the model is obtained, usable bandwidth is assessed, and 
noisy receivers are handled either through omission or by data covariance weighting.  Optionally an Lp 
rather than an L2 solution can be sought using iteratively reweighted least-squares.  

 

Having inverted for the potency tensor or moment tensor we study how errors propagate into source 
parameters, using the covariance matrices to generate tensors from a multivariate normal distribution.  
For each randomly generated moment or potency tensor model, conventional moment tensor 
decompositions (e.g. Hudson et al., 1989) are applied.  Figure 3 shows a modified Hudson crossplot (k 
vs. –tau) where we have removed the influence of the experimental geometry from the results by using 
a diagonal covariance matrix.  The modifications to the standard Hudson plot are to flip the horizontal 
axis and to plot parameters on a diamond without the skew (for a detailed discussion of different 
moment tensor interpretations, see Chapman and Leaney, 2012).  For the randomly sampled moment 
tensors the central (i.e. maximum likelihood) moment tensor is that for a pure slip source in an 
anisotropic medium, as would be obtained for example from a moment tensor inversion of sufficiently 
sampled noise-free data.  Perturbed versions of this are obtained according to the diagonal covariance 
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for  .  For the potency tensor the central point is again that for a pure slip source, as would be 
obtained from a noise-free potency tensor inversion.  Perturbed versions of this are obtained according 

to a diagonal covariance for  .  1000 models are sampled.  The   inversion clearly shows the bias to 
non-DC components due to the anisotropy of the source medium.  The   inversion, on the other hand, 
maintains a distribution in Hudson space that is centered over a pure slip or DC source. 

 

 
 

Figure 2: Ray+waveform inversion results for a pure slip source with scalar potency  [ ]   10
-4

m
3
 in a strongly VTI medium.  

The fracture plane strikes N20E with 40 degrees of dip, the slip vector has a rake of 60.  The source function is a Brune pulse 
with corner frequency fc=500hz.  Two twelve level receiver arrays record particle velocities from the far-field displacement 

signals of the event, having propagated through a layered VTI velocity model with constant Q=100.  Thomsen VTI parameters 
at the event location are ε=.33, δ=.20, γ=.43.  Input East, North, Up (ENU) waveforms are shown on the left with additive noise 

band-limited to 3-800Hz.  To the right are reconstructed ENU waveforms after inversion and the estimated source function, 
shifted from t=0 to the minimum P time and repeated for display. 

 

Figure 4 shows strike, dip and rake angles for the two cases of figure 3, again showing the distortion 
due to the presence of anisotropy and the advantage of inverting for the potency tensor rather than the 
moment tensor. 

 

Conclusions 

We discuss a modified formulation of the ray+waveform microseismic source inverse problem (Leaney 
et al., 2011) to invert for the potency tensor rather than the moment tensor.  In this formulation the 
source medium stiffness tensor is included in the ray strain Green function, decoupling source 
parameters from the source medium and leaving only parameters related to source geometry as 
unknowns.  In its simplest form this inverse problem remains linear, like inversion for the moment 
tensor.  We illustrate the advantages of potency tensor inversion by decomposing perturbed moment 
and potency tensors for a pure slip source where the perturbations honor a posterior covariance matrix.  
The potency tensor is shown to be superior to the moment tensor in being able to recover the correct 
source parameters free from the distortion due to anisotropy of the medium containing the source. 
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Figure 3:  Modified Hudson crossplots (k vs. –tau) for anisotropic moment tensor (left) and potency tensor (right).  1000 
multivariate normal realizations are shown for a pure slip source (0,0) using a diagonal covariance matrix with equal variances 
to remove the influence of the experimental geometry.  Potency tensor inversion recovers the source type correctly, free from 

bias and distortion due to anisotropy. 

 

 

 

Figure 4:  Strike (red), dip (green) and rake (blue) angles for moment tensor (left) and potency tensor (right).  Of the dual 
solutions the one with fracture normal closest to the true fracture normal was chosen.  Horizontal lines indicate the true model. 
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