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Summary 

The existing approaches to modeling seismic waves in attenuative media are based on time-dependent 
moduli and the quality factor (Q). In numerical algorithms, these properties are usually implemented by 
the Generalized Standard Linear Solid (GSLS), which is often illustrated by combinations of elastic and 
damping mechanical elements arranged in ‘Maxwell’s bodies’. However, although the concepts of Q 
and GSLS are usually thought to be very general, neither of them covers all cases of practical 
importance. In particular, the GSLS appears inadequate for fluids, fluid/solid mixtures, saturated porous 
rocks, and generally cases of low Q and transitional solid-fluid behaviour, such as bitumen-rich rocks.  

Here, we propose a broader class of rheologies that we call the General Linear Solid (GLS). The GLS 
is rigorously described by using the macroscopic continuum Lagrangian mechanics. Conventional 
spring-dashpot diagrams can be used to represent the structure of the Lagrangian model. The GLS 
rheology includes viscous solids, fluids, fluid-saturated porous rocks as well as the GSLS and 
numerous more complex cases. The model also offers straightforward extensions, such as to 
thermoelasticity and nonlinear elasticity, viscosity, and plasticity. GLS equations of motion take the form 
of differential matrix equations, and finite-difference schemes can be readily derived for numerical 
simulations in such media. The model is illustrated by modeling recent observations of low-frequency 
P-wave viscoelasticity in bitumen sands. 

Introduction 

To explain the attenuation of seismic waves, the inelasticity of the Earth is usually parameterized by the 
quality factor (Q) attributed to materials. The effects of Qs and Q-contrasts on wave propagation are 
discussed in many ‘classic’ and recent studies (e.g., Lines et al., 2014). Numerical modeling of seismic 
wavefields is also commonly based on the Q phenomenology. In modeling, certain Q(f) spectra 

(usually, Q(f)  const) are commonly achieved by constructing internal variables (‘memory’ variables; 
e.g., Zhu et al., 2013) or mechanical models of the medium, such as the Generalized Standard Linear 
Solid (GSLS; Liu, 1976; Figure 1).  

The Q and GSLS models are often viewed as 
almost universal, and they are represented in 
almost all seismic-waveform modeling software. 
Nevertheless, these models are in fact overly 
restrictive and may be inadequate for bitumen-rich 
rocks and heavy oil. This limitation occurs 
because the model in Figure 1 lacks both fluid 
viscosity (a damper placed parallel to element M) 
and poroelastic friction (discussed below). 
However, viscous and pore-fluid type internal-
friction mechanisms are likely important for the 
bitumen. 

In this paper, we try formulating a much more 

 
Figure 1. Generalized Standard Linear Solid (GSLS; black) 

model commonly used to implement attenuation and 
memory variables in finite-difference algorithms. 

Parameters M are moduli (observable and internal) and  
denote the internal viscosities of N Maxwell’s bodies. White 
circles are hidden internal variables. 
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general theoretical model that would be compatible with the physics of seismic wave attenuation in 
various media. The internal friction in materials occurs not because of a ‘Q’ but through a variety of 
specific physical mechanisms, such as viscosity, pore fluid flows, or thermoelasticity. It is important to 
try explaining the effects of attenuation directly in terms of such physical quantities rather than by 
empirical Q(f) spectra or effective moduli.  

For a first-principle physical description of wave-propagating media, continuum Lagrangian mechanics 
(Landau and Lifshitz, 1986) is the most complete, rigorous, and at the same time assumption-free and 
simple language. This language allows naturally incorporating all known mechanisms of internal friction 
and considering new ones. Note that Biot’s (1956) model of wave propagation in saturated porous rock 
is also based on Lagrangian formulation. This approach also explains the meanings of the conventional 
spring-dashpot diagrams commonly used to illustrate the viscoelasticity (e.g., Lakes, 2009) and reveals 
the intricacies of the mathematical tools used for modeling attenuation, such as the finite-difference 
memory variables (Deng and Morozov, 2013).  

Below, we describe a broad class of second-order rheologic laws that we call the General Linear Solid 
(GLS). This class combines and generalizes the Newtonian fluid, the conventional GSLS, and models 
of saturated porous rock (Biot, 1956; Bourbié et al., 1987). We show that by combining such models in 
a common matrix formalism, rigorous and realistic analytical and finite-difference models are obtained. 
These models should be useful for application to strongly-attenuating, fluid-rich or fluid-like media.  

Theory 

Lagrangian continuum mechanics 

Lagrangian mechanics is based on the Hamiltonian variational principle of stationary action (Landau 
and Lifshitz, 1986). Unfortunately, this approach is still poorly utilized in seismology, perhaps with the 
exception of poroelasticity (Biot, 1956). The principle of this approach consists in analysing the 
functional form of its Lagrangian density as a function of mutually independent displacements and 
velocities. For an isotropic medium, the Lagrangian density is a combination of two second-order, 

rotational invariants of the strain tensor:  
2

1 kkI   and 
2 ij ijI   . Two useful forms for the Lagrangian 

density are (e.g., Landau and Lifshitz, 1986): 
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where i = 1, 2, or 3 denotes the spatial dimensions,   kk is the volumetric strain, 3ij ij ij   %  is the 

deviatoric (pure shear) strain, and summations over all pairs of repeated indices are assumed. 

Parameters  and  are the (isothermal) Lamé elastic constants, 2 3K     is the bulk modulus, and 

 is the mass density. All medium parameters (,  and ) are real-valued and time- and frequency-
independent. To obtain a fluid, we only need to drop the shear-energy part in (1), which can be done by 

setting  = 0.  

The internal mechanical friction (fluid or solid viscosity) is described by a similar function called the 
dissipation function or pseudo-potential, D. Unlike the elastic energy, D principally depends on the 
strain rates. If we consider an isotropic medium and assume no internal variables such as those of pore 
fluids, then similarly to expression (1), the pseudo-potential D equals: 

                              2 2,
2 2

ij ij ij ijD 
 

 
          u u &&& &&& %%& .  (2) 

This viscosity law (‘rheology’) corresponds to the Naviér-Stokes equations for a Newtonian 
(compressible) fluid or to linear viscosity in a solid (Landau and Lifshitz, 1986).  

Spring-dashpot diagrams 

Mechanical properties of viscoelastic materials are often illustrated by arrangements of interconnected 
strings and dashpots (e.g., Lakes, 2009). It is usually noted that such diagrams are to be understood 
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not as construction of materials but only as 
implementations of certain causal stress-strain 
time dependences (ibid). In particular, different 
configurations of springs and dashpots can 
lead to identical strain-stress relations, but only 
the latter are considered important for deriving 
the wave motion. 

However, we argue the contrary, namely that 
the spring-dashpot systems are actually more 
important than the time-dependent strain-
stress relations they implement. From the viewpoint of Lagrangian mechanics, these diagrams 
graphically represent the selection of observable and internal variables and the functional forms 
selected for L and D. For example, the Voigt body in Figure 2 depicts the structure of the 
Lagrangian (1) and dissipation function (2) for a Newtonian solid. The black dot in Figure 2 indicates the 

state variable (u) with the corresponding kinetic-energy term (indicated by density ), the spring 
represents the elastic-energy terms in L, and the dashpot illustrates the quadratic function D. The 

spring and the dashpot are connected in parallel, meaning that they share a common strain tensor,  
(Figure 2). Note that in finite-difference modeling of anelastic solids, implementations of memory 
variables can always be described by a GSLS (e.g., Zhu et al., 2013), and therefore memory variables 
also follow from the selected spring-dashpot arrangements (Deng and Morozov, 2013).  

General Linear Solid rheology  

Thus, all existing finite-difference models of solid media can be fully described by Lagrangian 
mechanics. Let us therefore consider a more general mechanical system with N internal variables, 
which we call the General Linear Solid (GLS). Similarly to eqs. (1) and (2), we only use second-order 
forms for the kinetic energy, elastic energy, and dissipation function: 
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  (3)  

where the density (), moduli ( and ), and viscosities ( and ) are matrix properties, the upper-
case subscripts I,J = 0 correspond to the observable deformation parameters (displacement and 
strain), I,J = 1,… N enumerate the internal variables, and the lower-case subscripts i,j = 1,2,3 denote 
the spatial coordinates. An additional ‘damping’ matrix d is added to represent the mechanical friction 
caused by interactions between the components of the system. This term is constructed completely 

similar to the kinetic energy in L. Relations (3) can be expressed by using symmetric matrices , K, , 

d, , and  in the N + 1 dimensional space of state variables. Because the selection of internal 
variables can be relatively arbitrary, it is convenient to perform it so that it diagonalizes one of these 

matrices. Therefore, this medium generally requires   1 5 12 2N N   mechanical parameters for its 

characterization. 

The only property specified by the GLS relations (3) is that its responses to all deformations and/or 
deformation rates are linear. In terms of the diagrams similar to Figure 2, the GLS would have each 
variable connected to all others by dashpots and springs. A GSLS (Figure 1) would be obtained by 

setting the viscosities corresponding to the observable deformation equal zero: 00 = 00 = 0. A 

Maxwell’s solid is obtained by additionally setting 00 = 00 = 0 and taking N = 1. A Voigt solid is 

obtained by setting N = 0 (no internal variables). Finally, by setting the shear rigidity matrix    0, the 
Voigt solid becomes a Newtonian fluid with respect to seismic waves. 

Another restriction of relations (3) is that the deformations associated with different variables and the 
velocity-related damping d are considered not coupled to each other. This restriction is only made for 

 
Figure 2. Voigt spring-dashpot model (black) illustrating the structure 

of the Lagrangian (eq. (1)) and dissipation function (eq. (2)) for 
a Newtonian solid. 
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simplicity and can of course be lifted if needed. 

Equations of motion 

The equations of motion for the field resulting from functions (3) are (Landau and Lifshitz, 1986): 

                                         
i i j ij  ρu du σ&& & ,  (4) 

where the strain-related (elastic and viscous) stress tensor equals: 

                               2 2ij ij ij ij ij     σ λΔ με η Δ η ε& & .  (5) 

The general form of expressions (3) leads to an important observation about anelastic systems. Only 

for matrices  containing a single nonzero element 00, the behavior of internal variables is completely 
localized in space and reduces to memory integrals in time (Deng and Morozov, 2013). For non-trivial 

density matrices, the internal variables interact spatially (through terms containing IJ, IJ, IJ, and IJ 
in (3)) and lead to additional wave modes. Therefore, simply specifying the desired Q(f) function at 
every point and approximating it by a certain number of internal variables is generally insufficient for a 
describing an inelastic solid or fluid. For example, on the free surface of an anelastic body, one has to 
also formulate the boundary conditions for all internal variables uJ, with J = 1,…, N. This situation is well 
known in poroelasticity, where special boundary conditions for fluid flow are required. 

Correspondence principle 

For a harmonic oscillation at angular frequency , all variables u are proportional to exp(-it), and 

eqs. (4) and (5) can be written as an equivalent elastic problem: 

                                     
i j ij ρu σ%&& , where 2ij ij ij σ λΔ με% % ,  (6) 

in which the (matrix) parameters of the medium are complex-valued and dependent on : 

                               
i


 ρ ρ d% , i λ λ μ% , and i  μ μ η% .  (7) 

Transformations (7) give an extended form of the correspondence principle (Lakes, 2009). Importantly, 
note that the internal friction described by matrix d modifies the density matrix, making it complex-
valued. This is fundamentally different from the conventional viscoelasticity, in which the density always 

remains real-valued. However, the case d  0 occurs in poroelasticity. 

Poroelasticity 

With a single internal variable (N = 1), zero effective viscosity ( = 0), and appropriately selected 

matrices , K,  and d, the GLS model (3) describes poroelasticity (Biot, 1956). In this case, u0 
represents the deformation of the rock matrix, and the internal variable u1 can be selected as the 
filtration displacement (relative coordinate between the fluid and its unperturbed position in host matrix): 

1 fluid 0 u u u . Compared to using 1 fluidu u  in Bourbié et al. (1987), this parameterization simplifies 

the resulting matrix expressions below. Contributions of solid viscosity ( in the second equation (3)) 
are considered low compared to the friction from the filtration fluid d. 

For a simple illustration, let us consider a P wave, in which u0 and u1 reduce to the gradients of a scalar 

potential  (which is, however, a two-component vector in model space): u Φ . The equations of 

motion (4) become then: 

                                               2   ρΦ dΦ R Φ&& & ,  (8) 

where the density, P-wave rigidity, and damping matrices are: 

     f

f fa

 

 

 
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 

ρ , 
2

2f M

M M

  

 

 
  
 

R , and 
2

0 0

0   

 
  
 

d , respectively. (9) 

In these expressions, f is the Lamé modulus of a closed system (i.e. in which the fluid content is 

constant), a  1 is the ‘tortuosity’, f is the pore fluid density, and parameter M has the meaning of 
pressure that needs to be exerted on the fluid in order to increase the fluid content by a unit value at 
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constant volume (i.e., at kk = 0). 

Parameter   [0,1] measures the 
proportion of the apparent 
macroscopic dilatational strain caused 
by the variations in fluid content.  

Example 

We consider here only one example of 
the above model. Black lines in 
Figure 3 show the empirical P-wave 

modulus and attenuation 1

PQ  derived 

by Spencer (2013) from lab measurements at low frequencies (0.2–205 Hz) and temperature of 5C. 
Note that the lower-frequency halves of these curves were inferred from higher-temperature data by 
using an empirical frequency-temperature relation for polymers (pink in Figure 3; Williams, 1955).  

Because the bitumen sand is a compound, its description likely requires internal variables. Modeling a 
P wave in a GLS medium with a single internal variable fits the data in Figure 3 reasonably well (blue 
lines in that figure). The parameters of this model are:  

3

500 3066 kg
 

3066 4.34 m

 
  
 

ρ , 
2.38 24.3

 GPa
24.3 17.4

 
  
 

R ,  
27.7 19.7

 MPa s
19.7 19.7

 
   

η , and 
2

0 0 kPa s

0 34.3 m

  
  
 

d . (10) 

The structures of these matrices were selected similar to the poroelastic case (9). This is likely not the 
only plausible solution; however, neither the pure poroelastic model (9) nor the GSLS (Figure 1) explain 
the bitumen-sand data shown in Figure 3. 

Conclusions 

A new rheologic model with arbitrary internal variables called the Generalized Linear Solid incorporates 
fluids, the conventional viscoelastic (Voigt, Maxwell, Burgers, Standard Linear and Generalized 
Standard Linear) solids, and saturated porous solids. The model successfully predicts the observed 
behaviour of P waves in bitumen sands, which appear to be neither purely poroelastic nor viscoelastic. 
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