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Summary 

The propagation, reflectivity, and attenuation of seismic waves in bitumen-rich rocks and heavy oils can 
be difficult to explain by the traditional viscoelastic concepts, such as the Q factor. Heavy oils are likely 
non-Newtonian, and both viscosity and elasticity in them can be nonlinear. Recent lab experiments with 
Crisco vegetable shortening (Lines et al., Geophysical Prospecting, 2014) produced several remarkable 
observations useful for understanding such media: 1) low amplitudes and 2) low dominant frequencies 
of propagating waves, and 3) very strong negative reflectivity in water. Here, we propose a nonlinear 
model explaining these observations. The Crisco is interpreted as a viscous (Voigt) solid/fluid with 
strongly nonlinear behaviour at high strains. This nonlinearity affects a narrow zone extending to 1-2 
wavelengths from the source or from the water-Crisco boundary. This zone is responsible for all three 
key effects listed above. Beyond this zone, wave propagation is near-linear and similar to that in Crisco 
altered by melting and re-solidification. Notably, the reflections from unaltered Crisco in water are 
strong and of negative polarity, showing that they are caused by a dynamically-reduced effective 
modulus. By contrast, reflections from altered Crisco are much weaker and phase-rotated, which 
suggests that they are caused by contrasts in viscosity. Thus, physical properties such as nonlinear 
moduli and viscosity (and not so much the Q) provide a good way for explaining the behaviour of 
seismic waves in viscous-fluid rich or fluid-like solids. 

Introduction 

When considering wave propagation and reflectivity in weakly attenuative media or corrections for 
attenuation effects in seismic data processing, the quality factor (Q) is a convenient property 
representing the internal friction within materials (Lines et al., 2008; Reine et al. 2012; van der 
Baan, 2012; Lines, et al. 2014). The use of Q allows modeling the observed attenuation effects, and it 
is relatively easy to implement in numerical algorithms (e.g., Zhu, et al. 2013). However, for media with 
strong dissipation, such as viscous, heavy oil, specifying the Q alone is incomplete and insufficient for 
describing the behavior of seismic waves. In such cases, one needs to look into a more complete 
physical picture and identify the true physical parameters responsible for seismic attenuation. 

The difficulties of the conventional Q-based model can be demonstrated on the recent results of 
ultrasonic measurements of acoustic wave propagation and reflections in Crisco (Wong and 
Lines, 2013 and Lines et al. 2013). Crisco is a popular solidified (hydrogenated) vegetable shortening 
used to test acoustic-wave effects in viscous oils in the lab. Wong and Lines (2013) measured the 
reflectivity of the water-Crisco contact and found it to be of negative-polarity and surprisingly strong, 

close to about (-0.7). This result could be explained neither by the difference in impedances (V, which 

is very small for Crisco and water) nor by the effect of a very low Q (which would cause a 90-rotated 
reflection; Lines et al., 2014). In addition, the very low Q (~0.3 to 3) required for such reflectivity would 
also disagree with the observations of direct waves in Crisco, which only suggest moderate Q values of 
~15–50 (Wong and Lines, 2013).  

Another rarely noted limitation of the Q model is in its disagreement with poroelasticity (Biot, 1956). The 
frictional stress field in a poroelastic medium is proportional to filtration velocities, whereas in order to 
be described by a Q, the stress must be proportional to the strain and/or strain rate. However, 
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poroelastic effects should likely play some role in the behavior of fluid-saturated and bitumen-rich rocks. 
All this suggests that the physics of wave attenuation in Crisco (and therefore likely in heavy oils) does 
not easily reduce to the Q-type phenomenology. 

Here, we try explaining the disagreements in Crisco experiments mentioned above by testing a broader 
model of nonlinear viscosity and elasticity. In this model, there is no unique Q parameter, and this 
parameter is not needed for modeling wave attenuation effects. The observed frequency dependences 
of the wave Qs and effective moduli are explained by the dependences of the viscosities and elastic 
constants on strains and strain rates within the wave. This model is therefore fully consistent with 
mechanics and thermodynamics. We show how this model explains all experiments with both unaltered 
and altered Crisco (Wong and Lines, 2013) and constrain several physical parameters of this medium. 

Method 

Similarly to fluids, solids possess viscosity. This property means that in a deformed body, there exist 
stresses dependent on the strain rate (Landau and Lifshitz, 1986). In a Newtonian solid, the stress-
strain relation contains two parts: 1) the elastic stress-relation (Hooke’s law): 
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and 2) viscous stress with a similar dependence on strain rates (Naviér-Stokes law): 
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In equations (1) and (2), ui, is the displacement  and  are the Lamé constants, and the overdot 

indicates the time derivatives. Parameters  and  are analogous to  and  and represent the 
‘dynamic’ (ordinary, or shear) and ‘second’ viscosities, respectively. The combined stress laws (1) 
and (2) describe the medium known as the Voigt solid (Kolsky, 1963). This is the simplest model of 
viscous friction within an isotropic solid without knowledge or assumptions about its internal structure 
(Landau and Lifshitz, 1986). 

Substitution of stresses (1) and (2) in the second Newton’s law gives the equation of motion for the 
Voigt solid: 

                                                             el visc
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Equations (1) – (3) describe wave propagation in linear anelastic media. In the derivation of these 
equations, no notions of ‘relaxation mechanisms’ are used and only rigorous principles of physics are 
followed.  

For constant (, and  ,   equations (1)–(2) are linear with respect to deformation magnitude. 

Heavy oils, however, are most likely non-Newtonian fluids, and bitumen-rich rocks may also exhibit 
nonlinear elastic properties, especially in the near-source regions of strong amplitudes.  Minster et 
al. (1991) considered such nonlinear effects on the near-source attenuation, by assuming a 
dependence of the material Q on the strain. Coulman et al. (2013) proposed a power-law nonlinear 
viscosity for modeling the observed frequency-dependent Q spectra measured in lab experiments. In 

our approach, the nonlinearity arises naturally by noting that the elastic parameters  and can depend 

on the strain, and parameters and in (2) can depend on both the strain and strain rate.  

From a recent interpretation of the measurements with Crisco (Morozov et al, in preparation), all 
observations by Wong and Lines (2013) can be explained by allowing different levels of material 

constantsandfor low and high levels of strain, separated by some strain threshold . Such 

dependences can be modeled by using a sigmoid function    
1
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where  is the strain level at which the transition from plow to phigh occurs, and parameter p represents 

either the modulus or viscosity in this expression. For simplicity, for viscosity parameters  and we 
only consider dependences on the combined strain and strain-rate magnitude, defined 

by  
2 2

   &% . For the numerical examples below, we also (arbitrarily) take the time constant  in 

this relation equal 1 s. 

Numerical Modeling 

Let us consider propagation of a P wave in Crisco based on laboratory measurements by Wong and 
Lines (2013). For P waves, the elastic constants in eqs. (1) and (2) are combined into the P-wave 

modulus M = and the corresponding viscosity As discussed in detail by Morozov et al. 

(in preparation), the observations for unaltered and altered Crisco can be explained by the following 
values of these material parameters:  

1) For unaltered Crisco, the strain-dependent modulus M ranges from 0.2 GPa for high strains to 

2.5 GPa for low strains. The strain-dependent viscosity  varies from 51 Pas for low strains to 

78 Pas for high strains (Figure 1). 

2) For altered Crisco, the modulus M ranges from 2.09 GPa for high strains to 2.32 GPa for low 

strains. The viscosity  varies from 16 Pas for low strains to 39 Pas for high strains. 

The time-domain differential equations (1)–(3) can be readily implemented in 1-D a finite-difference 
algorithm. The source is modelled as a zero-phase Ricker wavelet with dominant frequency 800 kHz. 

Because of the nonlinearity an high  ratio near the source, the peak frequency drops within about 
two wavelengths, after which the peak frequencies drop to ~500 kHz and ~250 kHz for the altered- and 
unaltered- Crisco respectively. These frequencies are close to those observed for direct waves and 
reflections (Wong and Lines, 2013).  

Figure 2 compares the direct-wave waveforms modeled in unaltered and altered Crisco. Note that the 
waves decay in amplitudes and have dispersive shapes. Interestingly, the shapes of the ‘far-field’ 
wavelets are strongly different in these two cases. The wavelet in altered Crisco is similar to the zero-
phase source wavelet, whereas the wavelet in unaltered Crisco is strongly phase-rotated. This rotation 
occurs within a thin near-source zone of very high nonlinear attenuation. This zone extends to ~1–2 
wavelengths from the source or water-Crisco boundary, after which the strain drops and the 
propagation and attenuation become linear and correspond to the low-strain regime (Figure 1).  

Figure 3 shows the attenuation rates (Q-1), as functions of strain amplitudes, for harmonic waves 
modeled in unaltered and altered Crisco at 
three different frequencies. When strains are 

high,  > 0, the levels of Q-1 are also high and 
show strong variation with frequency. For low 

strains  < 0, Q-1 is much lower. This is the 

far-field regime. In this regime, the Q-1 of both 
unaltered and altered Crisco are similar. 

In the near field, the plane-wave attenuation 
in unaltered Crisco at 800 kHz is ~30–40 
times higher than that in altered Crisco and 

corresponds to Q  0.8. This ultra-low Q 
causes a rapid decay of the amplitude, a drop 
in the peak frequency, and a phase rotation 

 

Figure  1. Schematic nonlinear strain-dependent model for 
unaltered Crisco: a) Strain dependence of the P-wave 

modulus M; b) Dependence of P-wave viscosity  on the 

combined strain and strain-rate magnitude. 
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within the near-source zone, 
causing the observed much 
lower amplitudes and 
dominant frequencies in the 
‘far field’ in (Wong and Lines, 
2013).  

Figure 4 compares reflections 
from three different 
interfaces, which are also 
very close to those observed 
in the experiments by Wong 
and Lines (2013). The 
particle displacements of the 
reflections from water-
unaltered Crisco contact are 
almost the same in 
magnitude but of opposite 
polarity compared to those 
from aluminum (Figure 4). 
This opposite polarity is 
caused by the very low 
elastic modulus of the thin 
boundary of the unaltered 
Crisco ( 0.2 GPaM  at high 

strain). Therefore, the 
nonlinear modulus here 
dominates the reflectivity. 
However, the viscosity 
difference also contributes to the wavelet shape variations (red line in Figure 4).  

The altered Crisco has a narrow (interpreted) variation of the modulus (from 2.09 to 2.32 GPa), which is 
very close to that of water. The model shows small amplitude reflections from the water-altered Crisco 
contact (blue line in Figure 4). Unlike the reflection from water-unaltered Crisco contact, the reflection 

from altered Crisco shows a nearly 90 phase shift (blue line in Figure 4). Such phase-rotated reflection 
is controlled by the viscosity contrast. Note that similarly, strong nonlinear viscosity causes phase-
rotated direct waves in unaltered Crisco (Figure 2). 

Discussion 

The modeling described above successfully explains all 
three key observations with unaltered and altered Crisco by 
Wong and Lines (2013): 1) the amplitudes and attenuation 
of direct waves, 2) reduction of dominant frequencies; and 
3) reflection amplitudes in water. The physical, nonlinear 
viscosity-based approach provides us a new understanding 
of heavy-oil-like media.  

However, both this modeling and lab experiments were 
conducted at ultrasonic frequencies. Because of the 
nonlinearity, and also because of strong attenuation and 
dispersion of waves in viscous media, transferring these 
results to exploration seismic frequencies can be highly 
challenging. Further research of this subject is definitely 

 

Figure 2. Direct-wave waveforms in unaltered and altered Crisco simulated by finite-
difference modeling. Linear travel-time moveout with velocity VR = 1540 m/s is 
removed. 

 

 

Figure 3. Frequency and strain-dependent nonlinear attenuation. a) Q
-1

 spectrum of 

unaltered Crisco with 4

0
10


 , while b) is the Q

-1
 spectrum of altered Crisco with 

0 = 10-2. 

 

 

Figure 4. Displacement seismograms modeled 
for different media in contact with water. Black 
line respects to reflection from water-
aluminum contact, red line denotes reflection 
from water-unaltered Crisco contact and blue 
line represents that from water-altered Crisco 
contact.   
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required. 

Conclusions 

Recent laboratory observations of acoustic wave propagation and reflectivity in a proxy for heavy oil 
(Crisco; Wong and Lines, 2013) can be explained by nonlinear elasticity and viscosity. The nonlinearity 

concentrates in a narrow range of about 1-2 wavelengths near the source, where high strains (
0

  ) 

occur. The attenuation rate within this zone can be very high, causing a drop in the amplitude and peak 
frequency of the signal, and a phase rotation of the wavelet. Beyond this nonlinear range, the 
attenuation rate decreases, and wave propagation becomes linear. Modeling of reflections indicates 
that reflectivity from unaltered and altered (melted and re-solidified) Crisco in water occur differently. 
The strong negative reflections observed from unaltered Crisco are mainly due to the nonlinear 
reduction of the elastic modulus under high strain. For altered Crisco, the reflectivity is phase-rotated 
and principally explained by a contrast in viscosity.    

Acknowledgements 

This study was supported in part by Canada NSERC Discovery Grant RGPIN261610-03. W. D. was 
supported by the Scholarship Council, People’s Republic of China. 

References 

van der Baan, M., 2012, Bandwidth enhancement: Inverse Q filtering or time-varying Wiener deconvolution?: Geophysics 77, 
V133-V142, doi: 10.1190/geo2011-0500.1. 

Biot, M. A., 1956, Theory of propagation of elastic waves in a fluid-saturated porous solid. I.  Low-frequency range. The 
Journal of the Acoustical Society of America 28: 168, doi: 10.1121/1.1908239. 

Reine, C., R. Clark, M. van der Baan, 2012, Robust prestack Q-determination using surface seismic data: Part 1 — Method 
and synthetic examples: Geophysics, 77, R45-R56, doi: 10.1190/geo2011-0073.1. 

Coulman, T., W. Deng, and I. B. Morozov, 2013, Models of seismic attenuation measurements in the laboratory: Canadian 
Journal of Exploration Geophysics, 38, 51-67. 

Kolsky, H., 1963. Stress waves in solids, Dover Publications. 

Lines, L., F. Vasheghani, and S. Treitel, 2008, Reflections on Q: CSEG Recorder 34: 36-38. 

Landau, L. and E. Lifshitz, 1986, Theory of elasticity, Pergamon Press, Oxford: 155. 

Lines, L., J. Wong, K. Innanen, F. Vasheghani, C. Sondergeld, S. Treitel, and T. Ulrych, 2014, Research Note: Experimental 
measurements of Q-contrast reflections: Geophysical Prospecting, 62, 190-195, doi: 10.1111/1365-2478.12081. 

Minster, J. B., Day, M. Steven, and P. M. Shearer, 1991, The transition to the elastic regime in the vicinity of an underground 
explosion: American Geophysical Union, 65, 229-238. 

Morozov, I. B., W. Deng, L. Lines, C. Sondergeld, and S. Treitel, Seismic wave propagation and reflections in highly 
attenuative media, in preparation for Geophysical Prospecting 

Wong, J., and L. Lines, 2013, Physical modeling of reflections from low-Q media: Canadian Journal of Exploration 
Geophysics, 38, 32-39. 

Zhu, T., J. M. Carcione, and J.M. Harris, 2013, Approximating constant‐Q seismic propagation in the time domain: 

Geophysical Prospecting, 61, 931 – 940, doi: 10.1111/1365-2478.12044. 

 


