
 

  GeoConvention 2014: FOCUS 1 

Recovering low frequencies for impedance inversion by 
frequency domain deconvolution 

Sina. Esmaeili*, CREWES, University of Calgary, sesmaeil@ucalgary.ca 
Gary. Frank. Margrave, CREWES, University of Calgary, margrave@ucalgary.ca 

Summary  

Acoustic impedance is a rock property that can be derived from seismic data and contains 
important information about subsurface properties. Direct measurements of acoustic impedance are 
available from acoustic and density well logs, but these well data can provide the acoustic 
impedance only at the well’s location. Mathematically it is true that acoustic impedance can be 
calculated from earth’s reflectivity function, and this function can be estimated from seismic data. 
Additionally, estimation of reflectivity from seismic data is always bandlimited and affects acoustic 
impedance significantly. Acoustic impedance inversion can easily be computed by a standard 
impedance inversion algorithm which uses well logs to fill in the low-frequency information that is 
missing in bandlimited seismic data.  

In this study we investigate the performance of standard deconvolution and its ability to recover 
low frequency content directly from seismic data. We find that standard deconvolution does not 
perform well at low frequencies and this is a limiting factor in impedance inversion. Using frequency 
domain deconvolution, we show that improving the spectral smoothing process and applying a 
minimum phase spectral color operator to the deconvolved seismic trace can improve the 
performance of impedance inversion and reduce the bandwidth necessary from well control. 

 

 

Introduction 

The ultimate goal of geophysics is to determine the earth’s reflectivity as a function of position 
beneath a seismic survey. Once the raw data is processed, it is possible to estimate the earth’s reflectivity 
from them. The low frequency seismic data is getting contaminated with low frequency noises, and it will 
result in missing low frequency data in the recorded data. The question is, can we otherwise suppress 
low-frequency noise without wasting good information?  Waters (1978) described an impedance 
inversion scheme which is a simple approach to derive impedance values from seismic data. An 
impedance estimate, from a well log or stacking velocities, is first combined with integrated seismic data 
in the frequency domain. Detailed impedance values are thus provided by the integrated seismic data, 
and the low-frequency trend is provided by the well-log. Lindseth (1979) also added low frequencies 
derived from velocity analysis, and Oldenburg et al. (1983) introduced two different approaches for 
recovering low frequency information. Acoustic impedance inversion can also be computed easily by a 
BLIMP (BandLimited IMPedance) algorithm (Ferguson & Margrave, 1996) which uses well logs to fill in 
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the low frequency information that is missing in bandlimited seismic data. Recovering the low 
frequencies before passing through the impedance estimation process can be challenging. The key point 
of this idea is estimating the wavelet as accurately as possible during deconvolution hence the low 
frequency part can be recovered from estimated reflectivity. We start by reintroducing the convolutional 
model for normal incident seismograms and then show how reflectivity can be estimated by 
deconvolution. Two approaches will be discussed for recovering low frequencies in a deconvolution 
algorithm, and the result of impedance inversion derived from the new deconvolution will be presented. 

 

Theory and Method 

A wave source can put energy into the ground, and the wave can propagate through the earth and 
be reflected by reflectors (Figure 1). Regardless of the effect of geometrical spreading, transmission 
losses, an-elastic absorption and multiple reflections, a simple geophysical model can be introduced by 
a convolutional model. Seismic data recorded by a receiver are equal to a convolution of earth’s 
reflectivity function with a known wavelet (Sheriff & Geldart, 1995). 

 ( ) ( ) ( )s t r t w t , (1) 

where ( )s t  is the recorded seismic data, ( )r t  is the reflectivity function, ( )w t  is the wavelet and “ ” is 

a convolutional operator.  

 

FIG. 1. A homogeneous medium with a single reflector. 

It is also possible to add stationary and white noise to equation 1 to represent a recorded noisy 

seismogram. Equation 1 then becomes 

 ( ) ( ) ( ) ( )s t r t w t n t  , (2) 

where ( )n t  is a stationary and white noise which means that it has a constant power at all frequencies. 

 As was mentioned before the main goal of geophysics is determining a reflectivity function from 
recorded seismic data. Once the seismic data is recorded by receivers, it is used to estimate reflectivity. 
However, the only known parameter in equation 2 is ( )s t , which is a function of time, while all other 

parameters are unknown. Mathematically, deconvolution is an algorithm-based process which is used 
to reverse the effects of convolution on the recorded data. The goal of a deconvolution scheme is to 
remove the effect of the wavelet from seismic traces and then retrieving the earth’s reflectivity 
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function. Wiener spiking deconvolution (Leinbach, 1995), maximum entropy (Burg) deconvolution 
(AuYeung, 1986), frequency domain deconvolution (Margrave, 2002), and Gabor deconvolution 
(Margrave & Lamoureux, 2002) are different deconvolution methods that can be applied to seismic 
data to estimate reflectivity. This report outlines an attempt to estimate the reflectivity by applying 
frequency domain deconvolution to zero-offset seismic data and utilizing the result to calculate 
acoustic impedance inversion.  

Impedance Inversion 

Once the reflectivity function has been estimated it is possible to calculate the impedance inversion. 
The product of density and acoustic velocity, which varies among different rock layers, is known as 
acoustic impedance, common symbols for it are I and Z. Acoustic impedance indicates how much 
sound pressure is generated by the vibration of molecules of a particular acoustic medium. Therefore, 
in a one dimensional medium and the acoustic case for the normal incident wavelet, the reflection 
coefficient can be written as (Margrave, 2002) 
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where 1nI   and nI  represent the acoustic impedance of the (n+1)th and nth layer respectively. To 

calculate the acoustic impedance instead of using the impedance to compute reflection coefficients in 
equation 3, it is possible to use reflection coefficients which are derived from seismic data, in order to 
determine acoustic inversion (Lindseth, 1979). The reflection coefficients can be derived from recorded 
seismic data and well logs. Mathematically, the impedance can be written in terms of reflection 
coefficients like 
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By assuming 1nr  equation (4) can be approximately written as 
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Replacing n by n-1, equation 5 can be written for nI  as  

  1 11 2n n nI I r  . (6) 

Using the same procedure for upper layers, 1nI   can be rewritten as 
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and by a simple calculation, 1 2 jr  can be estimated as 
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Therefore, equation 7 becomes 
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Equation 9 is a type of inversion process which computes acoustic impedance from seismic 
reflection information and is known as impedance inversion (II). Therefore, given the impedance of the 
first layer and the estimated reflectivity function, acoustic impedance can be calculated.  

The seismic sources do not generate useful power at all frequencies, therefore it is accepted that 
any reflectivity estimate must be bandlimited. In this situation the bandlimited reflectivity includes 
fewer details than the actual earth reflectivity. The broadband and bandlimited reflectivity in the 
frequency and time domain is illustrated in figure 2. 

 

FIG. 2. Comparing broadband and bandlimited reflectivity in both frequency and time domain 

The first diagram shows that the broadband reflectivity contains all frequencies from zero to 500 Hz, 
but the bandlimited one contains only the frequencies from 10 Hz to 120 Hz. In the second diagram, 
the differences between two reflectivity functions are noticeable. It can be realized that the data which 
lack low and high frequencies have less resolution than the broadband data set.  

Frequency Domain Deconvolution 

The method described here is based on a frequency domain framework, which might be the easiest 
way to estimate reflectivity. Regardless of the phase spectrum of a seismic trace, the amplitude 
spectrum of seismic data is similar in shape to the amplitude spectrum of wavelet as shown in Figure 3. 
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FIG. 3. Amplitude spectrum of white spectrum reflectivity (blue), seismic data (green) and a minimum phase wavelet (red). 

If the amplitude spectrum of the wavelet can be computed by smoothing the amplitude spectrum of 
seismic data, the amplitude spectrum of the wavelet could be extracted and thus the reflectivity can be 
estimated. The perfect deconvolution operator can be defined as: 

 ( ) ( ) ( ),w t d t t  (10) 

so ( )d t  is inverse of ( )w t . By substituting the inverse of ( )w t  into equation 1, ( )r t  becomes 

 ( ) ( ) ( ),r t s t d t  (11)      

where ( )r t  is the exact reflectivity function. But in practice, because of the bandlimited nature of 

wavelets and the unavoidable presence of noise, even if we could find ( )d t  as a function to make 

equation 10 equal to ( )t , such an operator would simply produce noise at frequencies where noise 

dominates signal. This important fact leads us to the concept that the estimated reflectivity function is 
never exactly the same as the true reflectivity function. Mathematically, it can be written as:  

 ( ) ( ) ( ),d ds t r t w t  (12) 

where ( )ds t is the estimated reflectivity, and ( )dw t can be represented as 

 ( ) ( ) ( ),dw t d t w t  (13) 

where ( )dw t  is the estimated wavelet and is an approximation of true wavelet. Figure 4 is illustrating 

an example of an actual wavelet and its estimation in the time and frequency domain.  

 

FIG. 4. True and estimated wavelet in the time domain (left) and frequency domain (right) from a noise-free seismogram. 
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To construct a frequency domain deconvolution operator that can be applied to seismic data, some 
assumptions are required:  

1. The wavelet should be minimum phase. 

2. The wavelet spectrum should be smooth. 

3. The wavelet should be stationary. 

4. The reflectivity is assumed to be random, therefore its amplitude spectrum is assumed to be 
white. 

On the other hand, by writing equation 2 in frequency domain, 

 ( ) ( ) ( ) ( ),S f R f W f N f   (14) 

 It is possible to define a specific region of frequency ( min maxf f f  ), in which the ( ) ( )R f W f  term 

dominates over ( )N f and the noisy and noise-free seismograms are almost the same (figure 5). The 

white reflectivity assumption means 

 ( ) 1,R f   (15)   

where the overbar indicates smoothing. Therefore, the amplitude spectrum of an estimated wavelet 
can be expressed as 

 ( ) ( ) .S f W f  (16) 

The amplitude spectrum of a deconvolution operator can be calculated from equation 16 and 
equation 13 as following 

 
11

( ) ( ) ( ) ,
estimated

D f W f S f


   (17) 

which indicates that the amplitude spectrum of the deconvolution operator is the inverse of the 
estimated wavelet or inverse of the smoothing of the seismic amplitude spectrum. Therefore, the 
better smoothing of the seismic data we have the better reflectivity estimation.  

 

FIG. 5. Amplitude spectrum of noisy and noise-free seismograms. 



  

 GeoConvention 2014: FOCUS 7 

According to the minimum phase assumption of a wavelet and all above results, the complete form 
of a deconvolution operator becomes (Margrave, 2002) 
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 (18)  

where   is called the stability factor or white noise factor, a small positive number usually between 

0.01 and 0.000001, and 
maxA  is the maximum value of the spectrum of ( )

est
W f . Also, ( )D f is the 

phase of the deconvolution operator and can be defined as 

     ln ( ) ,D f H D f   (19) 

where H  is a linear transform and is called Hilbert transform. By applying equation 18 to a seismic trace, the 
reflectivity function can be estimated. 

 

Example 

REAL WELL DATA DECONVOLUTION RESULTS 

Geophysics attempts to make a model of the subsurface that is as accurate as possible. To reach this 
goal synthetic data, which is the modelled data, are created for the purpose of study, and can be 
compared to the actual seismic data results. One option to produce very realistic synthetic seismic data 
is to use sonic and density logs. Sonic and density logs provide detailed and accurate information about 
the subsurface. However, this information is valid only at the well’s location. By having velocity and 
density at the well’s location, it is possible to calculate an exact reflectivity function by equation 3. By 
convolving the reflectivity with a specific wavelet it is possible to synthesize seismic data. In September 
2011, CREWES initiated a seismic experiment with the goal of pushing the low-frequency content of seismic 
down as low as possible. This project was located near Hussar, Alberta, which is about 100km east of 
Calgary, Alberta. The line was 4.5km long and intersected three wells, 12-27, 14-27 and 14-35, shown in 

Figure 6 (Margrave, et al., 2012). In this study, the log data from well 12-27 have been used.  

 

FIG. 6. Location of the seismic line area near Hussar, Alberta, Canada, indicated by the red marker. (Lloyd, 2013) 
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FIG. 7. P-wave and density log of well 12-27 near Hussar. 

 

FIG. 8. Illustration of the reflectivity function, the 15Hz minimum phase wavelet, and the synthetic seismic trace, in the 
frequency domain. 

Figure 8 shows that the reflectivity spectrum does not have constant power which means that it is 
not a white reflectivity, and is called colored. This type of spectrum displays the principal character of 
amplitude spectra of the real earth’s reflectivity. However, a white spectrum is representative of 
random reflectivity. Therefore, applying a standard deconvolution operator, equation 18, to real 
seismic data causes an incorrect estimate, which will be described in further detail in the proceedings. 
In this study, we have tried to improve the reflectivity estimate at low frequencies. The followings are 
two different approaches to this issue: 

1. Improving the spectral smoothing process used to estimate the wavelet. 

2. Applying a spectral color operator to the deconvolved data to correct for the white reflectivity 
assumption. 
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Spectral smoothing 

Returning to the deconvolution process, the first step was to take the magnitude of the complex-
valued Fourier spectra, discarding all phase information. If the reflectivity is white, the resulting 
amplitude spectra for a typical case with synthetic data are shown in Figure 3. The general shape of the 
amplitude spectrum of the seismic signal comes entirely from the spectral shape of the source 
waveform. Put another way, if we smooth the amplitude spectrum of a seismic signal, we will estimate 
the amplitude spectrum of the source waveform. Once the amplitude spectrum of the source 
waveform has been estimated, the waveform’s phase spectrum needs to be estimated. This is where 
the assumption of minimum phase comes in. Therefore the most important stage of a frequency 
domain deconvolution process is the smoothing of seismic amplitude spectrum. Generally, smoothing 
or filtering techniques have been applied to suppress noise from noisy data. A common smoothing 
technique is to replace a given data point with the mean value of points in its neighborhood.  The size 
of the “neighborhood” defines the size of the smoothing operator.  An equally whitened local average 
is achieved by convolving the spectrum with a boxcar function. This process naturally results in a 
smoother signal. In this study, we investigate the use of a Gaussian smoother instead of a boxcar 
smoother. On the other hand the smoother should depend on the frequency because the length of 
smoother for the low frequencies and the high frequencies are different. The smoother length for the 
low frequencies should be small and for the high frequencies should be large. The reason is for 
instance the low frequency components when changing into the time coordinate components the 
spaces between elements being shorter and it should be convolving with the smaller smoother in the 
length. Therefor for creating deconvolution operator we used the frequency dependant Gaussian 
smoother.   

Applying this deconvolution operator to our synthetic seismic data can cause some issues, since the 
synthetic seismic data used in this study are related to a colored spectrum reflectivity, and they are 
contaminated with white random noise where its signal to noise ratio is equal to two. For noisy 
seismograms we only need that part of a spectrum where signal dominates noise, as shown in Figure 5. 
This area is found in the same figure in the region between fmin and fmax. Therefore, the deconvolved 
seismogram should be filtered by appropriate low-cut and high-cut frequency filters but here only the 
high cut filter was applied since the low frequency want to be recovered. Figures 9 and 10 illustrate the 
deconvolution results for noise-free and noisy seismogram with boxcar smoother and frequency 
dependant Gaussian smoother, respectively. At each of these figures the right plot shows zooming on 
the low-frequency part of left plot. It is obvious from these two figures that the results from a Gaussian 
smoother match the spectrum of reflectivity much better than the results from a boxcar smoother. 
Here the length of the frequency smoother is 65Hz and 40Hz for the noise-free and noisy seismogram 
respectively. However the new results have still some fundamental problems which come from 
assumptions on the deconvolution that have been already mentioned and will be reintroduced in the 
next part.   
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FIG. 9. Amplitude spectrum of deconvolved noise-free and noisy seismogram by using boxcar smoother (left) and zooming 
in low-frequency part (right).  

 

FIG. 10. Amplitude spectrum of deconvolved noise-free and noisy seismogram by using Gaussian smoother (left) and 
zooming in low-frequency part (right). 

Minimum phase spectral color operator 

One of the important assumptions regarding the deconvolution operator was white reflectivity 
which means that the power of the reflectivity’s spectrum should be constant for all frequencies. The 
spectrum of estimated reflectivity matches very well with the spectrum of true reflectivity when this 
operator is being applied to the seismic data which is the convolution of white reflectivity with a 
minimum phase wavelet (Figure 11). 

 

FIG. 11.  Amplitude spectrum of deconvolved noise-free and noisy seismograms for a white spectrum (left) and zooming in 
the low-frequency part (right). 

The reflectivity is well predicted by the deconvolution operator for the white spectrum case, 
especially in a noise-free seismogram. However, real seismic data are the consequence of colored 
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spectrum reflectivity convolved with a minimum phase wavelet. On the other hand, both noise-free 
and noisy deconvolved seismogram spectra for frequencies below 150Hz, have a white spectrum as 
shown in Figure 9. This is one of the most important defects of applying frequency domain 
deconvolution to a real seismic trace. Looking at the spectrum of reflectivity of frequencies below than 
150 Hz, it can be realized that it is possible to derive the trend of reflectivity in this part and apply it to 
the deconvolved seismogram as an operator. This operator is called as a minimum phase spectral color 
operator which is shown in Figure 12 in the frequency domain and can be found by fitting a curve into 
the absolute value of reflectivity’s spectrum. It should be also minimum phase as it was on of our 
assumption which means that its wavelet in time domain should be minimum phase.     

 

FIG. 12. Amplitude spectrum of colored spectral reflectivity (blue) and the spectral color operator (red). 

Applying a spectral color operator to a deconvolved seismic trace can be done by convolving a 

deconvolved seismic trace and color spectral operator in the time domain or equivalently by 

multiplying these two vectors in the frequency domain. The results of the amplitude spectrum of a 

noise-free and a noisy seismic trace after this process are shown in Figure 13 and 14, respectively. It 

can be seen from these two figures that the new operator corrects the previous results effectively, and 

its amplitude spectrum is matching the spectrum of reflectivity much better than before the 

correction. In the time domain, the improvement of results is obvious as well. Figure 16 shows the true 

reflectivity, noise-free and noisy seismic trace in the time domain. It shows that our corrections in the 

time domain and frequency domain were quite effective. It should be noted that in Figure 15 the 

diagrams of the noise-free seismogram and reflectivity are boosted to show the results the better. It 

should also be considered that, when reflectivity is convolved with a minimum phase wavelet, other 

attributes of a wavelet such as polarity and wavelet shifts can be transferred to the seismic data, and 

these will appear in the estimated reflectivity later. In this study both noise-free and noisy estimated 

reflectivity functions do not have any polarity changes, however, the noise-free one had a 0.3 lag and 

the noisy one had 1.6 lag. After correction their lags were reduced to 0.1 and 0.5 respectively. The 



  

 GeoConvention 2014: FOCUS 12 

complete comparison for maximum correlation and lags between the old version of frequency domain 

deconvolution, which was without any smoothing and color spectral correction, and new version which 

was after applying the mentioned correction to both noise-free and noisy estimated reflectivity, are 

represented in table 1.         

   

FIG. 13. Spectrum of the noise-free estimated seismogram after applying the spectral color operator. 

 

FIG. 14. Spectrum of the noisy estimated seismogram after applying the spectral color operator. 

 

FIG. 15. Comparing noise-free and noisy estimated reflectivity with true reflectivity in the time domain. 
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 Frequency Domain Deconvolution 
(Boxcar smoother before applying 

color spectral operator) 

Frequency Domain Deconvolution 
(Gaussian smoother after 

applying color spectral operator ) 

Estimated reflectivity 
(Noise-free) 

Maximum Correlation = 0.8668 

Lag = 0.2000 

Maximum Correlation = 0.9112 

Lag = 0.3000 

Estimated reflectivity 
(Noisy) 

Maximum Correlation = 0.3198 

Lag = 1.4000 

Maximum Correlation = 0.5698 

Lag = 0.5000 

Table 1. Table of maximum correlation between estimated reflectivity and true reflectivity in two different cases. 

Impedance inversion results 

Finally, after approximating reflectivity it is possible to estimate acoustic impedance from the 
estimated reflectivity. As was mentioned before the acoustic impedance of each layer can be 
calculated from equation 9. All we need is the first layer acoustic impedance and reflectivity function 
which was estimated in the last section. The acoustic impedance inversion for a noise-free seismic 
trace is illustrated in Figures 16 and 17. The first one is the results for the approximated reflectivity by 
the old deconvolution method and the second one is the results for the approximated reflectivity by 
the new approach. It is obvious that the differences are significant. The results for the noisy 
seismogram are also shown in Figures 18 and 19. Again it is clear that the result of acoustic impedance 
after applying the new smoother and color spectral operator is matching the well acoustic impedance 
much better than the results before applying them.   

 

FIG. 16. Acoustic impedance estimation from the noise-free seismic trace, before applying new smoother and the color 
spectral operator. 
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FIG. 17. Acoustic impedance estimation from the noise-free seismic trace, after applying new smoother and the color 
spectral operator.  

 

 

Fig. 18. Acoustic impedance estimation from noisy seismic trace, before applying new smoother and the color spectral 
operator. 

 

 

FIG. 19. Acoustic impedance estimation from noisy seismic traces, after applying new smoother and the color spectral 
operator. 



  

 GeoConvention 2014: FOCUS 15 

Conclusions 

The most challenging part in reflectivity estimation and acoustic impedance inversion is determining 
the low frequency components of seismic data. Although there are a number of approaches to extract 
low frequency information indirectly from other sources such as well log data, in this study we tried to 
investigate a new approach to reach this goal directly from seismic data. Using a proper smoother in 
the deconvolution process is an effective part of that procedure. It is realized that better seismic data 
smoothing can result in more realistic reflectivity estimates. However, our new smoother still needs 
some corrections to achieve much better results. On the other hand, as discussed, the deconvolution 
operator was designed for white spectrum reflectivity, and it had some issues in frequencies below 
150Hz for colored reflectivity. Consequently, the spectral operator was applied to the deconvolved 
seismogram, and the result was well matching the amplitude spectrum of the colored reflectivity.  

An optimal smoother determination, as well as a reasonable color spectral operator, has significant 
effects on reflectivity estimation results. Returning to the acoustic impedance results shows us that 
suggested approaches can affect the impedance estimation considerably. However, our model still has a 
problem in determination of true impedance trend which means that the low frequency information is 
still missing. 
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