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Summary

Formulations of finite-difference solutions to the elastic wave-equation are well documented in geophysical
literature. These finite-difference solutions model elastic wave propagation within a medium on a discrete
grid. Elastic wave propagation modelling makes possible the ability to extrapolate vector wave-fields forwards
and backwards through time. A major application of this is a depth imaging technique known as reverse time
migration. Elastic reverse time migration extrapolates source and receiver wave-fields in combination with an
imaging condition; generating depth images of subsurface impedance contrasts for both primary and converted
seismic phases. The technique utilizes two-dimensional isotropic elastic prestack data, and is capable of
handling steeply dipping complex structure. We will examine the effectiveness of the method applying it to a
faulted model synthetic data set and analyzing the results.

Introduction

The first reverse time migration algorithms outlined by Baysal et al. (1983) and Whitmore (1983) operate on
poststack seismic data and assume the seismic wave propagation to be acoustic. Chang and McMechan
(1987) formulate a two way elastic wave-equation reverse time migration for prestack data, where the imaging
condition incorporates ray tracing to calculate the image time. The migration algorithm of Botelho and Stoffa
(1991) also uses an elastic-wave equation for computing image times and receiver extrapolation; however,
does not consider generating separate images for primary and converted seismic phases. More contemporary
techniques propose generating independent images for primary and converted phases via decomposing the
elastic wave-field into scalar and vector potentials (Sun and McMechan, 2001; Yan and Sava, 2008). Although
different all these reverse time migration algorithms can be simplified into two steps, a wave-field extrapolation,
and an imaging condition (Sava and Fomel, 2006). The wave-field extrapolation requires a method to model
seismic wave propagation forwards and backwards through time. The imaging condition then exploits our
physical understanding of wave-field scattering to locate subsurface impedance contrasts. Thus, the accuracy
of our imaging algorithm depends largely on our ability to realistically model seismic wave propagation.

Finite-difference modelling

The derivation of Madariaga (1976), describes elastodynamic equations as a first-order hyperbolic system of
particle velocity and stress. This system of partial differential equations shown in 1 defines (vx,vz) as horizontal
and vertical particle velocities, (Txx,Tzz,Txz) as the horizontal, vertical and shear stresses, (λ ,µ) as the Lamé
parameters and ρ as density. The compressional and shear velocities (Vp,Vs) can be expressed as the Lamé
parameters and density. Setting µ equal to zero reduces the system to the acoustic case explained in detail by
Virieux (1984), allowing accurate solid liquid interface modelling.
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Virieux (1986) outlines a detailed staggered grid finite-difference scheme to solve this system of equations.
The staggered grid method discretizes the system of equations 1, where the components are staggered both
spatially and temporally. This is demonstrated by equation 2 and Figure 1 for the horizontal particle velocity
component vx from equations 1. It can be seen how spacial finite-difference derivative approximations of
stresses (Txx,Txz) at time t and the horizontal particle velocity value vx at time t− 1

2 update the system for the
horizontal particle velocity value vx at time t + 1

2 . Although the forward process is outlined, this algorithm can
be run forwards or backward in time. Depicted is the second-order finite-difference stencil in both space and
time O(∆t2,x2). To improve the stability of the Madariaga-Virieux algorithm the order of the finite-difference
derivative approximations can be increased spatially and temporally (Bayliss et al., 1986; Levander, 1988). For
this paper stencils are second-order in time and fourth-order in space O(∆t2,x4).
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Figure 1 Visual representation of equation 2 on standard staggered grid. Note the grid is staggered
both temporally and Spatially. a.) Horizontal particle velocity (circle) at time t + 1

2 . b.) Normal
Horizontal Stress (diamond) and Shear Stress (square) at time t. c.) Horizontal particle velocity
(circle) at time t− 1

2 .

The propagation of the elastic wave-field into unbounded model edges will generate undesirable boundary
reflections. Chew and Liu (1996) demonstrate that a perfectly matched layer can exist within elastic solids
that completely absorbs and annihilates elastic waves that propagate within the layer. The method splits
each wave-field component into directional derivative auxiliary equations, parallel and perpendicular to the
boundary. The splitting procedure is delineated in equation 3 for the horizontal particle velocity component
vx from equations 1 (the superscript denotes the directional derivative). Collino and Tsogka (2001) introduce
perfect matching layer dampening parameters for the Madariaga-Virieux finite-difference scheme. Shown in
equation 4 the dampening parameters are derived from the compressional velocity Vp, thickness of boundary
N, and a theoretical reflection coefficient R. These dampening parameters are then applied to the auxiliary
equation perpendicular to the boundary as it propagates into the perfectly matched layer.
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Recording each time step of the elastic wave-field propagation at discrete receiver locations in the model
(rx,rz), we can generate realistic synthetic multi-component seismograms free from numerical grid dispersion
and boundary artifacts. This elastic finite-difference scheme will act as the engine of the reverse time migration
algorithm.

GeoConvention 2014: FOCUS 2



Cross-correlation imaging condition

For a given shot profile k we can visualize seismic recordings as a series of snapshots of the seismic wave-
field restricted to only the receiver locations dk(x = rx,z = rz, t). Other than the direct arrival, all recorded energy
is associated with subsurface impedance contrasts scattering source energy back to the receivers. We can
extrapolate our restricted view of the wave-field back through time via finite-difference. If we have an accurate
velocity model, the back propagated wave-field will be properly positioned in the subsurface model (x,z) at
each time step. This is referred to as the receiver side wave-field:

dk(x = rx,z = rz, t)
f inite−di f f erence−−−−−−−−−−→

extrapolation
Rk(x,z, t)

Similarly, if we have prior knowledge of the position (sx,sz) and temporal shape of the source function (seismic
wavelet) sk(x = sx,z = sz, t), we can extrapolate energy of the source wave-field forward through time. This is
referred to as the source side wave-field:

sk(x = sx,z = sz, t)
f inite−di f f erence−−−−−−−−−−→

extrapolation
Sk(x,z, t)

Figure 2 Visual representation of snapshot cubes for a single shot k. a.) The source side wave-field
Sk(x,z, t) with the 0.751s snapshot shown. b.) The Receiver side wave-field Rk(x,z, t) with the 0.751s
snapshot shown.

If source side and receiver side energy exist at the same position in the subsurface at time step t, this reveals a
subsurface reflector where source energy scattering has occurred. This is the concept of the cross-correlation
imaging condition (Claerbout, 1985). The mathematical representation is delineated by Pk(x,z), in equation 5,
as the zero lag cross-correlation of the source and receiver side snapshot cubes. Stacking each partial image
Pk(x,z) generates the final image F(x,z).

Pk(x,z) = ∑
t

Sk(x,z, t)Rk(x,z, t) (5)

F(x,z) = ∑
k

Pk(x,z)

When imaging using scalar wave-fields the cross-correlation imaging condition becomes straight forward. How-
ever, when imaging with vector wave-fields each source side and receiver side wave-field is composed of
multiple components adding complexity to the imaging condition.
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Imaging with compressional and shear modes

A corollary of Helmholtz Theorem states that for any divergence free vector field Ψ and curl free scalar field Φ

there exists a unique vector field V such that:

∇ ·V = Φ and, ∇×V = Ψ (6)

In two-dimensional isotropic media the compressional wave mode Pw(x,z, t) corresponds purely to volumetric
perturbations (curl free). Similarly, the shear wave mode Sw(x,z, t) corresponds purely to shearing/shape per-
turbations (divergence free). Therefore, the isotropic elastic wave-field U(x,z, t) composed of compressional
and shear wave modes can be described as a vector field with a prescribed divergence and curl where:

∇ ·U(x,z, t) = Pw(x,z, t) and, ∇×U(x,z, t) = Sw(x,z, t) (7)

Dellinger and Etgen (1990) exploit this property of the elasodynamic equations in isotropic media, separating
finite-difference modelled elastic wave-fields into compressional and shear modes via divergence and curl
operators. Applying wave mode separation to the source and receiver snapshot cubes, Yan and Sava (2008)
formulate an expanded cross-correlation imaging condition for vector wave-fields. This is shown in equation 8
where the superscripts on the source side and receiver side snapshot cubes denotes the corresponding wave
mode.
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This imaging condition has a clear physical interpretation, as cross-correlation of a source side and a receiver
side compressional mode gives an image of the migrated primary seismic phases PPP

K (x,z). Similarly, cross-
correlation of a source side compressional mode with a receiver side shear mode gives an image of the
converted seismic phases PPS

K (x,z).

Examples

The velocity model shown in Figure 3 a.) was used to conduct a synthetic seismic survey. The survey was
designed as an ocean bottom node survey with 500 receivers placed on the ocean floor (Z = 400m) at a 10m
spacing. 64 shots were fired 10m below the sea surface, with a regular shot interval of 75m. The top boundary
of the model was set to be a perfect matching layer such that no free surface multiples were propagated. The
recorded wave-field for the X = 3000m shot is shown in Figure 4. The recorded data with the direct and scholte
waves removed was then back propagated from the receivers through the smooth velocity model shown in
Figure 3 b.). For each back propagated shot k the snapshots of the wave-field were split into compressional
and shear modes via divergence and curl operations producing RPw

k (x,z),RSw
k (x,z). Concurrently, the source

function for each shot k was forward propagated through the smooth velocity model producing SPw
k (x,z). Note

no shear mode for the source side wave-field as a pressure source was implemented. The vector cross-
correlation imaging condition was then applied producing partial images PPP

k (x,z),PPS
k (x,z). The partial images

were then bandpass filtered and the PPS
k (x,z) images corrected for negative offset polarity reversal. Stacking

the partial images and muting above the first reflector produced the final images shown in Figure 5. Note the
algorithms ability to resolve the complex notch structure in the bottom three layers.
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Figure 3 Faulted velocity model [nx = 2000 nz = 800 ∆x = 2.5m ∆z = 2.5m], Vp
Vs

=
√

2 and density
1000− 1750kg/m3 a.) Compressional velocities. b.) Smoothed compressional velocities used for
wave-field extrapolation.

Figure 4 Recorded data for 3000m shot. a.) Vertical particle velocity component vz. b.) vz with direct
and scholte wave removed for back propagation. c.) Horizontal particle velocity component vx. d.) vx

with direct and scholte wave removed for back propagation.
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Figure 5 64 Stacked partial images. The images are bandpass filtered and muted above the first
reflector. a.) Migrated primary phases FPP(x,z). b.) Migrated converted phases FPS(x,z).

Conclusions
Reverse time migration algorithms are a useful depth imaging tool when dealing with steeply dipping complex
structure. We investigate a reverse time migration algorithm for two-dimensional isotropic elastic prestack data.
The outlined Madariaga-Virieux staggered grid finite-difference scheme models seismic wave-field propaga-
tion. This finite-difference scheme acts as the engine of the reverse time migration algorithm extrapolating
wave-fields forwards and backwards through time. A vector cross-correlation imaging condition then generates
images for both primary and converted seismic phases. The method is applied to a faulted model OBN syn-
thetic data set, and shows the ability to accurately resolve detailed images of subsurface impedance contrasts.
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